

COMMUNITY OVERVIEW AND SCRUTINY COMMITTEE INFRASTRUCTURE OVERVIEW AND SCRUTINY COMMITTEE

Committee Report

Public

Date of Meeting: 27 March 2008: Community Overview and Scrutiny Committee

10 April 2008: Infrastructure Overview and Scrutiny Committee

Title: LOCAL AIR QUALITY MANAGEMENT: DETAILED ASSESSMENT

REPORT

Report of: DIRECTOR OF COMMUNITY SERVICES

Report reference: CS 08/08

Summary: The Detailed Assessment Report provides information on the detailed

assessment of local air quality at four separate locations within Carlisle and concludes that it will be necessary for the Council to

declare four additional Air Quality Management Areas.

Questions for / input required from Scrutiny:

That Members consider the Air Quality Detailed Assessment Report and its recommendations for four additional Air Quality Management Areas in Carlisle.

Recommendations:

That Members consider and comment on the Detailed Assessment

Report and its recommendations.

Contact Officer: David J Ingham Ext: 7328

Environmental Quality Manager

REPORT TO EXECUTIVE

PORTFOLIO AREA: ENVIRONMENT & INFRASTRUCTURE

Date of Meeting: 17 March 2008		
Public		
Key Decision: Yes	Recorded in Forward Plan:	Yes
Inside Policy Framework		

LOCAL AIR QUALITY MANAGEMENT: DETAILED ASSESSMENT REPORT

Title: Local Air Quality Management: Detailed Assessment Report

Report of: Director of Community Services

Report reference: CS 07/08

Summary:

The Detailed Assessment Report provides information on the detailed assessment of local air quality and identifies four separate locations within Carlisle which exceed benchwork guidelines and concludes that it will be necessary for the Council to declare four additional Air Quality Management Areas.

Recommendations:

That members refer the Detailed Assessment Report to Community Overview and Scrutiny Committee on 27 March 2008 and Infrastructure Overview and Scrutiny Committee on 10 April 2008 for those committees to consider the recommendation that four new Air Quality Management Areas should be declared by the Council.

Contact Officer: David Ingham Ext: 7328

Environmental Quality Manager

Note: in compliance with section 100d of the Local Government (Access to Information) Act 1985 the report has been prepared in part from the following papers: Previous Report to Executive 25th September 2006 – Clean Neighbourhoods and Environment Act 2005: Dog Control orders (CS 46/06).

BACKGROUND INFORMATION AND OPTIONS

1.1 Introduction

The Environment Act 1995 introduced a new system of local air quality management in the U.K. This introduced measures in line with the Government's Air Quality Strategy which provide a framework for air quality control through air quality management and air quality standards.

The Air Quality Regulations 1997, 2000 and 2002 set the standards and objective levels for air quality.

The Environment Act also placed a legal duty on all Local Authorities to periodically review and assess the current and predicted air quality within their geographic area against the air quality objectives.

In areas where an air quality objective is not anticipated to be met, Local Authorities are required to establish Air Quality Management Areas (A.Q.M.A`s) and implement Action Plans to improve air quality.

The Council has already declared two Air Quality Management Areas in the City in December 2005 and December 2006 applying to the A7 along Scotland Road/Kingstown Road and to Currock Street, respectively. The Council has prepared and introduced an Air Quality Action Plan which fulfils the Council's duty to pursue the achievement of air quality objectives in these Air Quality Management Areas.

1.2 Detailed Assessment

An Air Quality Updating and Screening Assessment carried out in May 2006 by the Council concluded that in addition to the Currock Street and Scotland Road/Kingstown Road areas exceeding the average nitrogen dioxide concentrations objective level, there was also a significant risk of other relevant locations within the City exceeding the air quality objective for nitrogen dioxide. These were: The A595 Caldewgate and Castleway; Warwick Road; A6 Botchergate and London Road; and Charlotte Street, Victoria Viaduct and Junction Street. This Updating and Screening Assessment Report was reported to Executive and Council in 2006.

Where significant risk of exceedence is identified for a pollutant it is necessary for the local authority to proceed to a Detailed Assessment. The Council commissioned the air quality consultants A.E.A. Technology to carry out the Detailed Assessment work necessary.

1.3 **Detailed Assessment Report**

- 1.3.1 The A.E.A. Technology Consultants Report (Appendix 1) concluded that the air quality objective for nitrogen dioxide is currently not met at four locations, these being on Wigton Road, on the A595 Bridge Street, at the junction of Dalston Road and Junction Street and on the A6 London Road. These are very small localised areas of exceedance.
- 1.3.2 The Consultant's report recommends that the Council considers declaring Air Quality Management Areas to cover the following areas:
 - To cover Wigton Road between Crummock Street and Ashley Street and extending to cover the properties: the Post Office and odd nos. 69-95 Wigton Road; nos. 35, 37 and 39a and even numbers 26-52 Wigton Road.
 - •The north side of the A595, northbound from the junction with Shaddongate and including the two properties on which the "Impact" diffusion tube is sited, Brewer House and Old Brewery House.
 - To cover the junction of Dalston Road and Junction Street, Carlisle and including even nos. 76-52 Dalston Road, nos. 1 and 2 Newcastle Street, nos. 1 and 2 Kendal Street, nos. 1-6 Dixon Court, the public house on the corner of Dixon Court and Shaddongate, no. 44 Shaddongate, The Guard House and Linton House Shaddongate.
 - To cover the North side of the A6 from the junction of London Road and Blake Street, extending to cover no. 33 London Road.

1.4 Conclusion and Observations

1.4.1 Where assessed pollutant levels are found likely to exceed the air quality objectives at relevant locations the Council is required to declare Air Quality Management Areas and it will be necessary for the Council to declare four additional A.Q.M.A`s in respect of these identified small areas.

- 1.4.2 Street map locations showing the details of the four proposed new A.Q.M.A's are contained in Appendix 2.
- 1.4.3 Whilst the Council is required to declare A.Q.M.A`s this does not necessarily mean that the air quality is significantly worse at these locations than it was in 2006 when they were initially identified as areas requiring more detailed assessment.
- 1.4.4 In January 2008 Council approved an Air Quality Action Plan which introduced measures designed to improve air quality in the City which will help address the exceedences in these areas. (Progress on the implementation of the Action Plan will be reported separately to Committee at a later date.)
- 1.4.5 Following any declaration of new A.Q.M.A's it is necessary for the Council to enter into discussion with other bodies in particular the County Council Highways Department to consider measures to reduce the nitrogen dioxide levels to below the objective levels at the locations concerned.
- 1.4.6 It should be noted that the Detailed Assessment Report states that in two of the four proposed A.Q.M.A`s the nitrogen dioxide levels will fall below the objective level by the target date of 2010 without any additional measures being taken. (i.e.Bridge Street and Wigton Road).
- 1.4.7 The main purpose of declaring the A.Q.M.A's will be to ensure that there is no worsening of air quality as a result of new development and this will be pursued by requiring Air Quality Impact Assessments to be carried out by developers where a proposed development has the potential to impact on air quality within an A.Q.M.A.
- 1.4.8 The Council will be required to undertake what is referred to as a "Further Assessment Report" to confirm that the areas covered by the A.Q.M.A`s are appropriate and that any additional measures proposed to reduce pollutant levels as part of the Air Quality Action Plan, are likely to be effective.

2. **CONSULTATION**

2.1 Consultation to Date

The following parties were consulted on the consultants Detailed Assessment Report:-

Cumbria County Council Local Committee

Highways and Transport Working Group
The Environment Agency
Allerdale Borough Council
Dumfries and Galloway Council
North Tyneside Council
Eden District Council
Cumbria Chamber of Commerce and Industry
Statecoach North West Bus Company
All Relevant Services/Team Managers within the Council

2.2 Consultation Proposed

The Cumbria County Council Local Committee Highways and Transport Group considered the consultation at their meeting on 15 January 2008 and reply was received from T. Richard Hayward, Area Engineer (copies appended: Appendix 2). The committee agreed to support the proposals for four new A.Q.M.A`s.

2.3 Reply was received from the Secretary of State for Environment, Food and rural Affairs (copy appended: Appendix 3).

Defra accepts the conclusions of the Detailed assessment Report.

- 2.4 It is proposed that the Detailed assessment Report be considered by Community Overview and Scrutiny Committee and Infrastructure Overview and Scrutiny Committee.
- 2.5 Consultation will also take place regarding the Detailed Assessment with Senior Management Team and Joint Management Team.

3. **RECOMMENDATIONS**

3.1 That members refer the Detailed Assessment Report to Community Overview and Scrutiny Committee on 27 March 2008 and Infrastructure Overview and Scrutiny Committee on 10 April 2008 for those committees to consider the recommendation that four new Air Quality Management Areas should be declared by the Council.

4. REASONS FOR RECOMMENDATIONS

4.1 To ensure compliance with Council constitution and with Government requirements regarding Local Air Quality Management.

5. **IMPLICATIONS**

Staffing/resources - Existing staffing resource.

Financial - Funding within existing budgets will continue to be required for air quality monitoring and assessment. No

additional funding is required at this time.

Legal - The Council is under legal obligation to carry out Local

Air Quality Assessment and Management.

Corporate - The Council is under legal obligation to carry out Local

Air Quality Assessment and Management.

Risk Management - Failing to meet the Government's requirements would

be a reputation risk to the Council and impact on the quality of life of citizens living in the relevant areas.

Equality Issues - Nil.

Environmental - Assessment of Local Air Quality is an important part of

the Council's objectives to maintain a healthy

environment.

Crime and Disorder - Nil.

Impact on Customers - Nil.

APPENDIX 1

Air Quality: Detailed Assessment

Dalston Road, A595 Caldewgate and A6 Botchergate

Report to Carlisle City Council

Unrestricted ED 05488 Issue 1 September 2007

Title	Air Quality: Detailed Assessment: Dalston Road, A595 Caldewgate and A6 Botchergate		
Customer	Carlisle City Council		
Customer reference			
Confidentiality, copyright and reproduction	Unrestricted		
File reference	X:/lads/Carlis	leDA_FA07/detailed07v1	
Reference number	ED05376001	/R2390 Issue 1	
	AEA Energy & Environment The Gemini Building Fermi Avenue Harwell International Business Centre Didcot OX11 0QR t: 0870 190 6401 f: 0870 190 6318 AEA Energy & Environment is a business name of AEA Technology plc AEA Energy & Environment is certificated to ISO9001 and ISO14001		
Author	Name	Michael Harfoot	
Approved by	Name	Beth Conlan	
	Signature		
	Date		

AEA/ED05488/Issue 1

Executive summary

The UK Government published its strategic policy framework for air quality management in 1995 establishing national strategies and policies on air quality which culminated in the Environment Act, 1995. The Air Quality Strategy¹ provides a framework for air quality control through air quality management and air quality standards. These and other air quality standards¹ and their objectives have been enacted through the Air Quality Regulations in 1997, 2000 and 2002². The Environment Act 1995 requires Local Authorities to undertake air quality reviews. In areas where an air quality objective is not anticipated to be met, Local Authorities are required to establish Air Quality Management Areas and implement action plans to improve air quality.

Carlisle City Council has progressed to the Third round of review and assessment. The third round of review and assessment is undertaken in two steps. The first step is an Updating and Screening Assessment, which updates the Stage 1 and 2 review and assessment previously undertaken for all pollutants identified in the Air Quality Regulations. Where a significant risk of exceedence is identified for a pollutant it is necessary for the local authority to proceed to a Detailed Assessment, equivalent to the previous Stage 3 assessments. Where a local authority does not need to undertake a Detailed Assessment, a progress report is required instead. Carlisle City Council carried out an Updating and Screening Assessment in May 2006 and concluded, on the basis of monitoring evidence, that annual average nitrogen dioxide concentrations exceeding the objective were to be found in the Currock Street area of the City. An AQMA was declared for this location in December 2006. The same assessment also concluded there was a significant risk of exceeding the air quality objective for nitrogen dioxide at relevant locations outside the proposed AQMA. These were: the A595 Caldewgate and Castleway; Warwick Road, A6 Botchergate and London Road; and, Charlotte Street, Victoria Viaduct and Junction Street.

This report is a Detailed Assessment for Carlisle City Council as outlined in the Government's published guidance.

The general approach taken to this Detailed Assessment was to:

- Identify potential "hot spots" where there is expected to be the greatest potential for public exposure in the general area identified in the Updating and Screening Assessment as being at risk of exceedence;
- Collect and interpret additional data to support the detailed assessment, including detailed traffic flow data around potential hotspots;
- Consider recent continuous monitoring and diffusion tube measurements;
- Use monitoring data from the continuous monitors located at Paddy's Market and Stanwix Bank to assess the ambient concentrations produced by the road traffic and to calibrate the output of modelling studies;
- Model the concentrations of NO₂ around the potential hotspots, concentrating on the locations (receptors) where people might be exposed over the relevant averaging times of the air quality objectives;
- Present the concentrations as contour plots and assess the uncertainty in the predicted concentrations;
- Consider whether the authority should declare an Air Quality Management Area (AQMA) and provide recommendations on the scope and extent of any proposed Air Quality Management Area.

The assessment shows that the air quality objective for nitrogen dioxide is currently not met in four locations; on Wigton Road between Crummock Street & Ashley Street, on the A595 Bridge Street at the junction with Shaddongate, at the junction of Dalston Road and Junction Street, and on the A6 London Road.

_

¹ Refers to standards recommended by the Expert Panel on Air Quality Standards. Recommended standards are set purely with regard to scientific and medical evidence on the effects of the particular pollutants on health, at levels at which risks to public health, including vulnerable groups, are very small or regarded as negligible.

It is therefore recommended that Carlisle City Council consider declaring AQMAs to cover the following areas:

- To cover Wigton Road between Crummock Street and Ashley Street and extending to cover the properties: the Post Office and Odd Nos. 69 – 95 Wigton Road; Nos. 35, 37 and 39a, and even numbers 26 – 52 Wigton Road;
- The north side of the A595, northbound from the junction with Shaddongate and including the two properties on which the "Impact" diffusion tube is sited, Brewer House and Old Brewery House.
- To cover the junction of Dalston Road and Junction Street, Carlisle, and including even Nos. 76 52 Dalston Road, Nos. 1 and 2 Newcastle Street, Nos. 1 and 2 Kendal Street, Nos. 1 6 Dixon Court, the public house on the corner of Dixon Court and Shaddongate, No. 44 Shaddongate, The Guard House and Linton House Shaddongate.
- To cover the North side of the A6 from the junction of London Road and blake Street, extending to cover No. 33 London Road.

It is recommended that when Carlisle City Council moves to a Further Assessment of these areas, a comprehensive assessment of the peak and off-peak queuing within Carlisle is carried out. It would also be advantageous to calculate an annual average diurnal traffic flow for the Carlisle area

The assessment indicates that the air quality objective for nitrogen dioxide is currently met at the other relevant locations considered along Newtown Road, Charlotte Street, Nelson Bridge, James Street, Warwick Road and The Crescent.

Table of contents

<u>1</u>	intro	<u>oduction</u>	1
	<u>1.1</u>	Purpose of the Detailed Assessment	1
	<u>1.2</u>	Overview of the approach taken	2
	<u>1.3</u>	Relevant DEFRA documentation used	2
	<u>1.4</u>	Pollutants considered in this report	2
<u>2</u>	<u>The</u>	UK Air Quality Strategy	5
	<u>2.2</u>	Air Quality Reviews - the approaches and expected outcomes	5
	<u>2.3</u>	Locations that the review and assessment must concentrate on	6
<u>3</u>	<u>Info</u>	rmation used to support this assessment	8
	<u>3.1</u>	Review and Assessment reports	8
	<u>3.2</u>	Maps and distances of receptors from roads	8
	<u>3.3</u>	Road traffic data	8
	<u>3.4</u>	Ambient monitoring	g
	<u>3.5</u>	Emission factors	10
<u>4</u>	Deta	ailed Assessment for Nitrogen Dioxide	11
	<u>4.1</u>	The national perspective	11
	<u>4.2</u>	Standards and objectives for nitrogen dioxide	11
	<u>4.3</u>	Conclusions of the first and second round of review and assessments for nitrogen	
	dioxi	<u>de</u>	11
	<u>4.4</u>	Updating and Screening Assessment 2006	11
	<u>4.5</u>	Background concentrations for nitrogen dioxide	12
	<u>4.6</u>	Assessment of monitoring data	12
	<u>4.7</u>	Overview of the air quality modelling	15
	<u>4.8</u>	<u>Detailed modelling results</u>	18
	<u>4.9</u>	Recommendation	21
<u>5</u>	Con	<u>iclusions</u>	30
6	Refe	erences	31

Appendices

Appendix 1 Traffic data

AEA/ED05488/Issue 1

1 Introduction

This section outlines the purpose of this Detailed Assessment for Carlisle City Council, and the scope of the assessment.

1.1 Purpose of the Detailed Assessment

The **first round** of air quality review and assessments is now complete and all local authorities should have completed all necessary stages. Where the likelihood of exceedences of air quality objectives has been identified in areas of significant public exposure, an air quality management area (AQMA) should have been declared, followed by a further Stage 4 review and assessment, and the formulation of an action plan to eliminate exceedences. Carlisle City Council completed the first round of review and assessments in March 2000 and it was not considered necessary to declare an AQMA in the Carlisle City Council area.

Local authorities were required to proceed to the **second round** of review and assessment in which sources of emissions to air are reassessed to identify whether the situation has changed since the first round of review and assessment, and if so, what impact this may have on predicted exceedences of the air quality objectives. Such changes might include significant traffic growth on a major road, which had not been foreseen, construction of a new industrial plant with emissions to air, or significant changes in the emissions of an existing plant.

The second round of review and assessment is undertaken in two steps. The first step is an Updating and Screening Assessment, which updates the Stage 1 and 2 review and assessments previously undertaken for all pollutants identified in the Air Quality Regulations. Where a significant risk of exceedence is identified outside the AQMA for a pollutant it is necessary for the local authority to proceed to a Detailed Assessment, equivalent to the previous Stage 3 assessments. Where a local authority does not need to undertake a Detailed Assessment, a progress report is required instead.

Carlisle City Council carried out an Updating and Screening Assessment (USA) in 2003 and concluded that detailed assessment was required for various road sections for nitrogen dioxide and PM₁₀. Carlisle City Council produced a detailed assessment for these road sections in 2005. The purpose of the detailed assessment was to provide an accurate assessment of the likelihood of an air quality objective being exceeded at locations with relevant exposure; along the A595 running through Caldewgate and alongside the A7 from junction 44 of the M6 and Hardwicke Circus. As a result of the detailed assessment, the Council declared an AQMA for the A7. A detailed assessment of this location was completed in 2005 in order to help designate the boundaries of the AQMA. Additionally, on the basis of diffusion tube monitoring, an AQMA was declared in December 206 to cover Currock Street at the junction with Rome Street. Further assessment of these AQMAs is currently being completed.

An Updating and Screening Assessment was carried out in May 2006 by Carlisle City Council and concluded that detailed assessment was required for nitrogen dioxide at the following road sections:

- A595 Caldewgate and Castleway
- Warwick Road/ A6 Botchergate/ London Road
- Victoria Viaduct/ Charlotte Street/ Junction Street

The purpose of the detailed assessment is to provide an accurate assessment of the likelihood of an air quality objective being exceeded at locations with relevant exposure. This should be sufficiently detailed to allow the designation of any necessary AQMAs. This report is a Detailed Assessment for Carlisle City Council as outlined in the Government's published guidance.

1.2 Overview of the approach taken

The general approach taken to this Detailed Assessment was to:

- Identify potential "hot spots" where there is expected to be the greatest potential for public exposure in the general area identified in the Progress Report as being at risk of exceedence;
- Collect and interpret additional data to support the detailed assessment, including detailed traffic flow data around potential hotspots;
- Consider recent continuous monitoring and diffusion tube measurements;
- Use monitoring data from the continuous monitors located at Paddy's Market and at Stanwix Bank, Carlisle to assess the ambient concentrations produced by the road traffic and to calibrate the output of modelling studies;
- Model the concentrations of NO₂ around the potential hotspots, concentrating on the locations (receptors) where people might be exposed over the relevant averaging times of the air quality objectives;
- Present the concentrations as contour plots and assess the uncertainty in the predicted concentrations;
- Consider whether the authority should declare an Air Quality Management Area and provide recommendations on the scope and extent of any proposed Air Quality Management Area.

1.3 Relevant DEFRA documentation used

This report takes into account the guidance in LAQM.TG(03), published January 2003 and updated guidance available as Frequently Asked Questions on the Review and Assessment website hosted by the University of the West of England (UWE).

1.4 Pollutants considered in this report

Table 1.1 lists the pollutants included in the Air Quality Regulations for the purposes of Review and Assessment. Nitrogen dioxide is considered in this report. The Progress Report concluded that detailed assessment of other pollutants was not required.

AEA/ED05488

Table 1.1 Objectives included in the Air Quality Regulations 2000 and (Amendment) Regulations 2002 for the purpose of Local Air Quality Management

Pollutant	Air Quality Objective	Date to be	
	Concentration	Measured as	achieved by
Benzene			
All authorities	16.25 μg/m³	running annual mean	31.12.2003
Authorities in England and Wales only	5.00 μg/m ³	annual mean	31.12.2010
Authorities in open areas and coastal areas should be cleaner as air changes more frequently and Northern Ireland only	3.25 μg/m ³	running annual mean	31.12.2010
1,3-Butadiene	2.25 μg/m ³	running annual mean	31.12.2003
Carbon monoxide Authorities in England, Wales and Northern Ireland only	10.0 mg/m ³	maximum daily running 8- hour mean	31.12.2003
Authorities in Scotland only	10.0 mg/m ³	running 8-hour mean	31.12.2003
Lead	0.5 μg/m³ 0.25 μg/m³	annual mean annual mean	31.12.2004 31.12.2008
Nitrogen dioxide ^b	200 µg/m³ not to be exceeded more than 18 times a year 40 µg/m³	1 hour mean annual mean	31.12.2005 31.12.2005
Particles (PM ₁₀) (gravimetric) ^c All authorities	50 μg/m³ not to be exceeded more than 35 times a year	24 hour mean	31.12.2004
	40 μg/m ³	annual mean	31.12.2004
Authorities in Scotland only ^d	50 μg/m³ not to be exceeded more than 7 times a year 18 μg/m³	24 hour mean	31.12.2010
Sulphur dioxide	350 μg/m³ not to be exceeded more than 24 times a year	1 hour mean	31.12.2004
	125 μg/m³ not to be exceeded more than 3 times a year	24 hour mean	31.12.2004
The objectives for nitrogen disvide	266 μg/m³ not to be exceeded more than 35 times a year	15 minute mean	31.12.2005

b. The objectives for nitrogen dioxide are provisional.

Additional national particles objectives for England, Wales and Greater London are not currently included in Regulations for the purpose of LAQM. The Government and the Welsh Assembly Government however intends that the new particles objectives will be included in Regulations as soon as practicable after the review of the EU's first air quality daughter directive. The additional particles objectives for England, Wales and Greater London are shown in Table 1.2. Whilst authorities have no obligation to review and assess against them, they may find it helpful to do so, in order to assist with longer-term planning, and the assessment of development proposals in their local areas.

c. Measured using the European gravimetric transfer standard sampler or equivalent.

d. These 2010 Air Quality Objectives for PM10 apply in Scotland only, as set out in the Air Quality (Scotland) Amendment Regulations 2002.

Table 1.2: Proposed new particles objectives for England, Wales and Greater London (not included in Regulations)

Region	Air Quality Objective		Date to be
	Concentration	Measured as	achieved by
London	50 μg/m ³ not to be exceeded more than 10 times a year	24 hour mean	31.12.2010
London	23 μg/m³	annual mean	31.12.2010
London	20 μg/m³	annual mean	31.12.2015
Rest of England and Wales	50 μg/m ³ not to be exceeded more than 7 times a year	24 hour mean	31.12.2010
Rest of England and Wales	20 μg/m³	annual mean	31.12.2010

2 The UK Air Quality Strategy

The Government prepared the Air Quality Strategy for England, Scotland, Wales and Northern Ireland for consultation in August 1999. It was published in January 2000 (DETR, 2000).

2.1.1 National Air Quality Standards

At the centre of the Air Quality Strategy is the use of national air quality standards to enable air quality to be measured and assessed. These also provide the means by which objectives and timescales for the achievement of objectives can be set. These standards and associated specific objectives to be achieved between 2003 and 2010 are shown in Table 1.1.

2.1.2 Timescales to achieve the objectives for the pollutants in the Air Quality Strategy

In most local authorities in the UK, objectives will be met for most of the pollutants within the timescale of the objectives shown in Table 1.1. It is important to note that the objectives for NO₂ remain provisional. The Government has recognised the problems associated with achieving the standard for ozone and this will not therefore be a statutory requirement. Ozone is a secondary pollutant and transboundary in nature and it is recognised that local authorities themselves can exert little influence on concentrations when they are the result of regional primary emission patterns.

2.2 Air Quality Reviews – the approaches and expected outcomes

Technical Guidance has been issued in 'Review and Assessment: Technical Guidance' LAQM.TG (03)³ to enable air quality to be monitored, modelled, reviewed and assessed in an appropriate and consistent fashion. This detailed assessment has considered the procedures set out in this technical guidance.

The primary objective of undertaking a review of air quality is to identify any areas that are unlikely to meet national air quality objectives and ensure that air quality is considered in local authority decision-making processes. The complexity and detail required in a review depends on the risk of failing to achieve air quality objectives and it has been proposed therefore that reviews should be carried out in two steps. Both steps of review and assessment may be necessary and every authority is expected to undertake at least the first of these in their authority area. The steps are briefly described in the following table, Table 2.1.

Table 2.1 Brief details of steps in the second Round of the Air Quality Review and Assessment process

Level of Assessment	Objective	Approach
Updating and Screening	To identify those matters that have changed since the last review and assessment, which might lead to a risk of an air quality objective being exceeded	Use a checklist to identify significant changes that require further consideration. Where such changes are identified, then apply simple screening tools to decide whether there is sufficient risk of an exceedence of an objective to justify a Detailed Assessment
Detailed Assessment	To provide an accurate assessment of the likelihood of an air quality objective being exceeded at locations with relevant exposure. This should be sufficiently detailed to allow the designation or amendment of any necessary AQMAs	Use quality-assured monitoring and validated modelling methods to determine current and future pollutant concentrations in areas where there is a significant risk of exceeding an air quality objective.
Annual Progress Reports	Local authorities should prepare annual air quality Progress Reports between subsequent rounds of reviews and assessments. The concept is that this will ensure continuity in the LAQM process.	The precise format for the Progress Report has not yet been determined, but will essentially follow the checklist approach that is set out in subsequent chapters of this document. Further details on the Progress Reports are provided via the Helpdesks. It is envisaged that these Progress Reports could be useful for the compilation of annual 'state of the environment' reports that many authorities already prepare.

2.3 Locations that the review and assessment must concentrate on

For the purpose of review and assessment, the authority should focus their work on locations where members of the public are likely to be exposed over the averaging period of the objective. Table 2.2 summarises the locations where the objectives should and should not apply.

Table 2.2 Typical locations where the objectives should and should not apply

Averaging Period	Pollutants	Objectives should apply at	Objectives should <i>not</i> generally apply at
Annual mean	1,3 Butadiene Benzene Lead Nitrogen dioxide	All background locations where members of the public might be regularly exposed.	Building facades of offices or other places of work where members of the public do not have regular access.
	Particulate Matter (PM ₁₀)	Building facades of residential properties, schools, hospitals, libraries etc.	Gardens of residential properties.
			Kerbside sites (as opposed to locations at the building facade), or any other location where public exposure is expected to be short term
24 hour mean and 8-hour mean	Carbon monoxide Particulate Matter (PM ₁₀) Sulphur dioxide	All locations where the annual mean objective would apply.	Kerbside sites (as opposed to locations at the building facade), or any other location where public exposure is expected to be short term.
		Gardens of residential properties.	
1 hour mean	Nitrogen dioxide Sulphur dioxide	All locations where the annual mean and 24 and 8-hour mean objectives apply.	Kerbside sites where the public would not be expected to have regular access.
		Kerbside sites (e.g. pavements of busy shopping streets).	
		Those parts of car parks and railway stations etc. which are not fully enclosed.	
		Any outdoor locations to which the public might reasonably be expected to have access.	
15 minute mean	Sulphur dioxide	All locations where members of the public might reasonably be exposed for a period of 15 minutes or longer.	

It is unnecessary to consider exceedences of the objectives at any location where public exposure over the relevant averaging period would be unrealistic. Locations should also represent non-occupational exposure.

3 Information used to support this assessment

This section lists the key information used in this review and assessment.

3.1 Review and Assessment reports

Carlisle City Council completed its second round Updating and Screening assessment in May 2003 and the following detailed assessment in 2005. The detailed assessment concluded that the current and forward predicted exceedences of the relevant air quality objectives for nitrogen dioxide had not been identified for the A595, Caldewgate but that monitoring would continue for that locality. However, exceedences of the annual mean nitrogen dioxide objective had been identified for relevant locations along the A7. As a result of the detailed assessment it was recommended that an AQMA be declared for the A7. An additional AQMA was declared in December 2006 to cover Currock Street at the junction with Rome Street.

In its 2006 Updating and Screening report, Carlisle City Council presented new monitoring information that indicated potential exceedences of the nitrogen dioxide objective at three locations:

- A595 Caldewgate/ Church Street/ Bridge Street;
- Junction Street/ Charlotte Street/ Victoria Viaduct;
- Warwick Street/ The Crescent/ A6, Botchergate.

3.2 Maps and distances of receptors from roads

Carlisle City Council provided electronic OS LandLine™ data which were used in the Geographical Information System (GIS) used in assessment. The maps were used to provide details of the location of road centrelines and road widths. Individual buildings or groups of buildings (receptors) were also identified. The distances of these receptors from the road were accurately determined from the maps.

All maps in this document are reproduced from Ordnance Survey material with permission of the Controller of Her Majesty's Stationery Office © Crown Copyright. Unauthorised reproduction infringes Crown copyright and may lead to prosecution or civil proceedings. Carlisle City Council Licence number 0100024459.

3.3 Road traffic data

Carlisle City Council provided traffic data for the roads and junctions assessed. The data included:

- Annually Averaged Daily Traffic flows for vehicles, assuming 10% HDV;
- Queue surveys at junctions;
- Pedestrian crossing locations;
- Bus stop locations and bus frequencies.

The data are summarised in Appendix 1.

A diurnal variation in traffic flow was assumed, typical of urban roads in the north-west.

The base year for the traffic flows was 2006. Traffic flows were projected for future years using TEMPRO/NRTF scaling factors for the appropriate year.

3.4 Ambient monitoring

The assessment has considered continuous automatic monitoring data from two continuous monitoring stations in Carlisle. Pollutant concentrations have been monitored at two roadside sites; at Paddy's Market on A595 Caldewgate, Carlisle (OS 339467, 555974) for several years since 2005, and on the A7, Stanwix Bank, Carlisle (OS 340018, 557044) from late 2006.

Nitrogen dioxide concentrations are measured by ozone chemiluminescence. The sites are operated and maintained by Casella CRE Air. Casella CRE Air has a defined quality system, which forms part of the UKAS accreditation that the laboratory holds.

Carlisle City Council operates a network of nitrogen dioxide diffusion tubes across the District. The diffusion tubes are prepared with 10% triethanolamine (TEA) in water by Casella Cre Air. Twenty four of the diffusion tubes are located close to the areas to be investigated in this detailed assessment. The locations of the diffusion tubes are listed in Table 3.1. In addition, diffusion tubes are collocated in triplicate at the Paddy's Market monitoring site.

Table 3.1: Diffusion tube locations.

Site Number	Site	Easting, m	Northing, m
A1	45 SCOTLAND ROAD	339995	557188
A10	STANWIX BANK	340008	556842
A12	14 ETTERBY ST	339935	557125
A5	37 KINGSTOWN ROAD	339758	558059
A7	282 KINGSTOWN ROAD	339526	559285
A9	BRAMPTON ROAD	340028	556833
B10	24 DALSTON ROAD	339347	555422
B11	6 CURROCK ROAD	340321	554621
B12	DENTON/CHAR	339921	555406
В3	SHADDONMILL	339537	555613
B4	DALSTON ROAD	339434	555638
B5	8 JUNCTION ST	339613	555587
В6	41 CHARLOTTE ST	339731	555526
B7	12 CURROCK STREET	340205	555198
C1	LOWTHER STREET	340216	556131
C2	TIC	340069	555955
C3	DEVONSHIRE STREET	340218	555768
C4	BAR SOLO	340286	555622
C5	GRIFFEN	340298	555589
D1	VICTORIA PLACE	341106	555954
D10	368 WARWICK ROAD	342044	555907
D11	CARTEF	340426	556040
D12	POST OFFICE	340307	555718
D3	160 WARWICK ROAD	341153	555896
D5	215 WARWICK ROAD	341310	555914
D7	282 WARWICK ROAD	341593	555893
D9	251 WARWICK ROAD	341426	555910
E22	FINKLE STREET	339834	556137
E12	3 WIGTON ROAD	339225	555821
E15	WIGTON ROAD 22	339091	555736
E16	JOVIAL SAILOR	339141	555900
E17	NEWTOWN RD	338562	555621

Site Number	Site	Easting, m	Northing, m
E19	49 WIGTON ROAD	338953	555610
E2	BRIDGE STREET	339449	556010
E20	44 WIGTON ROAD	339023	555692
E4	JOHN STREET	339396	555947
E6	AIR MONITOR 1	339467	555974
E6	AIR MONITOR 2	339467	555974
E6	AIR MONITOR 3	339467	555974
E8	IMPACT	339516	556024
E9	КС	339405	555996
E21	BURGH ROAD	337730	556118
F1	3 TAIT STREET	340482	555489
F10	155 BOTCHERGATE	349597	555351
F11	5 ST NICHOLAS STREET	340654	555261
F5	STANLEY HALL	340534	555409
F7	24 LONDON ROAD	340708	555240
F9	129 LONDON ROAD	341099	554931
H1	BRAMPTON	352824	561039
H3	LONGTOWN	338052	568478

3.5 Emission factors

The vehicle emission factors used for national mapping were revised by defra and the devolved administrations² in 2001. The most recent emission factors have been used in this detailed assessment.

Emissions from stationary traffic in queues and at bus stops were estimated using the emission factor for vehicles moving at 5 km h⁻¹ and taking account of the proportion of time stationary vehicles are present and the length of road over which emissions take place. The average length of a queuing vehicle was assumed to be 5 m. The average queue length at bus stops was estimated from the annual average daily traffic flow and estimated waiting times

AEA Energy & Environment

² The new set of emission factors on the NAEI website (www.naei.org.uk/emissions/index.php) approved by DEFRA and DTLR for use in emissions and air quality modelling, following consultation of the TRL Report "Exhaust Emission Factors 2001: Database and Emission Factors" by TJ Barlow, AJ Hickman and P Boulter, TRL, September 2001

4 Detailed Assessment for Nitrogen Dioxide

4.1 The national perspective

The principal source of NOx emissions is road transport, which accounted for about 46% of total UK emissions in 2001. Major roads carrying large volumes of high-speed traffic (such as motorways and other primary routes) are a predominant source, as are conurbations and city centres with congested traffic. Within most urban areas, the contribution of road transport to local emissions will be much greater than for the national picture.

Meeting the annual mean objective is considerably more demanding than achieving the 1-hour objective. National studies have indicated that the annual mean objective is usually achieved at urban background locations outside of London, but that the objective is exceeded more widely at roadside sites throughout the UK in close proximity to busy road links. Projections for 2010 indicate that the EU limit value may still be exceeded at urban background sites in London, and at roadside locations in other towns and cities.

4.2 Standards and objectives for nitrogen dioxide

The Government and the Devolved Administrations have adopted two Air Quality Objectives for nitrogen dioxide, as an annual mean concentration of 40 μ gm⁻³, and a 1-hour mean concentration of 200 μ gm⁻³ not to be exceeded more than 18 times per year. The objectives are to be achieved by the end of 2005.

4.3 Conclusions of the first and second round of review and assessments for nitrogen dioxide

The first round Stage 3 Review and Assessment of NO_2 concluded it was not necessary to declare an AQMA in the Carlisle City Council area. During the second round of review and assessments, it was identified that an exceedence of the annual mean nitrogen dioxide objective was likely to occur along sections of the A7 between Stanwix Bank and Kingstown Road. Following consultation, Carlisle City Council declared an AQMA along the A7 between Junction 44 of the M6 and Hardwick Circus. On the basis of diffusion tube monitoring AQMA 2 was declared for Currock Street at the junction with Rome Street.

4.4 Updating and Screening Assessment 2006

The third round Updating and Screening Assessment for nitrogen dioxide concluded that there was a need to proceed to a detailed assessment for nitrogen dioxide at a few locations in the Carlisle City Council area:

- Shaddongate/ Junction St./ Charlotte St./ Currock St.
- A595 Caldewgate/ Bridge St./ Newtown Rd./ Wigton Rd.;
- A6 Botchergate/ London Road.

No industrial sources were identified in previous rounds of review and assessment as being significant emitters of nitrogen dioxide. No new industrial sources were identified in the 2006 Updating and Screening report.

4.5 Background concentrations for nitrogen dioxide

The estimated annual average background nitrogen dioxide (NO₂) concentration provided by the UK background maps for 2005 was 5.4 μgm^{-3} averaged across Carlisle District with a maximum concentration of 18.2 μgm^{-3} .

The estimated annual average background oxides of nitrogen (NO_x) concentration provided by the UK background maps for 2005 was 6.9 μ gm⁻³ averaged across Carlisle District with a maximum concentration of 24.6 μ gm⁻³.

4.6 Assessment of monitoring data

Table 4.1 summarises the measurements of nitrogen dioxide concentrations at continuous monitoring stations in Carlisle for relevant periods.

Table 4.1: Continuous monitoring data

Site	Period	NO _x , concentration, μg m ⁻³ as NO ₂ Period average	NO ₂ Concentration, μg m ⁻³ Period average	Data capture, %
Paddy's Market	2006	86.3	32.1	95
Stanwix Bank	April –August 2007	150.5	43.9	95

The 2006 annual mean nitrogen dioxide concentration at the Paddy's Market site was around 20% less than the annual mean objective of 40 μg m⁻³. However, at the Stanwix Bank site, the April to August 2007 period mean concentration was in exceedence of this objective. Table 4.2 summarises the automatic monitor data used to adjust the period mean monitoring data from Stanwix Bank. After adjustment the Stanwix Bank period mean value for nitrogen dioxide concentration is 41.3 μg m⁻³, still in exceedence of the annual mean objective.

Table 4.2: Continuous monitoring data used in adjustment of period mean Stanwix Bank monitoring data

	NO ₂ concentration, ug m ⁻³			
Site	2006 Annual Mean	Period Mean April - August 2006	Ratio	
Manchester, Urban Centre	44.17	46.24	0.96	
Dumfries, Roadside	35.81	37.04	0.97	
Bury, Roadside	59.03	65.09	0.91	
Mean			0.94	

Nitrogen dioxide diffusion tube measurements were made at 23 locations in the areas considered here over the period January-December 2006 and at the Paddy's Market site collocated with the continuous monitor. Bias adjustment factors have been calculated based on the measurements at the co-location sites over the period January-August 2006 corresponding to the period of the available diffusion tube measurements. Table 4.3 shows the monthly average concentrations calculated from triplicate diffusion tubes at the Paddy's Market site.

On the basis of the 2006 co-location study at the Paddy's Market site, a diffusion tube bias adjustment factor of 1.00 calculated using the AEA diffusion tube precision and accuracy bias adjusting spreadsheet (Appendix 1). The mean coefficient of variance for the collocated diffusion tubes at the Paddy's Market site is greater than 10%, which calls into question the precision of this collocation study and therefore its validity for calculating bias adjustment. UWE publish the results of

AEA/ED05488

UK-wide collocation studies on their website. Results for Casella CRE for years 2003 - 2006 for this preparation method indicate bias adjustment factors in the range of 0.80 - 1.01, the 2006 factor being 0.87. In addition to publishing the UK mean bias adjustment factor, UWE also publish the precision of the studies giving rise to that factor. Of the 10 studies published for 2006, half were of poor precision (mean coefficient of variance < 10%) and half were of good precision (mean coefficient of variance < 10%). The precision of the studies from which the UWE UK-wide adjustment factor was derived is therefore not significantly greater than that calculated for the Paddy's Market collocation study

Table 4.4 shows the diffusion tube measurements adjusted for diffusion tube bias using the Paddy's Market and UWE UK-wide bias adjustment factors. On average, the estimated annual mean concentration for 2006 based on the diffusion tube results and the Paddy's Market bias adjustment factor exceeds the annual mean objective of 40 μ g m⁻³ in areas E and F (Table 4.4). The estimated concentration based on the UWE UK-wide bias adjustment factor does not, on average, exceed the objective in any of the areas. Adjustment of the estimated annual mean nitrogen dioxide concentrations using the UWE UK-wide adjustment factor therefore leads to a shift below the exceedence objective for two area averages. The UWE UK-wide adjustment factor will be used for this report and subsequent references to diffusion tube measurements assume that the measurements have been adjusted using that factor.

Table 4.3: Monthly average diffusion tube measurements at collocation site

	Concentration, μg m ⁻³		
Month	Paddy's Market		
Jan	48		
Feb	47		
Mar	46		
Apr	30		
May	28		
Jun			
Jly	26		
Aug	23		
Sep	29		
Oct	26		
Nov	29		
Dec	26		

Table 4.4: Bias adjusted nitrogen dioxide concentrations at diffusion tube sites

		Concentration, ug m ⁻³				
Site Number	Site	Unadjusted 2006 annual mean	Paddy's Market bias	UK-wide bias		
Area B						
В3	SHADDONMILL	24.91	24.91	21.67		
B4	DALSTON ROAD	54.33	54.33	47.27		
B5	8 JUNCTION ST	37.42	37.42	32.55		
В6	41 CHARLOTTE ST	43.75	43.75	38.06		
B7	12 CURROCK STREET	47.25	47.25	41.11		
B10	24 DALSTON ROAD	22.75	22.75	19.79		
B12	DENTON/CHAR	36.18	36.18	31.48		
	Mean	38.08	38.08	33.13		
Area E						
E2	BRIDGE STREET	45.29	45.29	39.40		
E4	JOHN STREET	44.64	44.64	38.83		
E8	IMPACT	57.82	57.82	50.30		
E9	KC	35.00	35.00	30.45		
E12	3 WIGTON ROAD	46.09	46.09	40.10		
E15	WIGTON ROAD 22	44.64	44.64	38.83		
E16	JOVIAL SAILOR	43.45	43.45	37.81		
E19	49 WIGTON ROAD	50.50	50.50	43.94		
E20	44 WIGTON ROAD	43.58	43.58	37.92		
E22	FINKLE STREET	38.86	38.86	33.81		
Mean		43.16	43.16	37.55		
Area F						
C4	BAR SOLO	41.64	41.64	36.22		
C5	GRIFFEN	44.75	44.75	38.93		
D12	POST OFFICE	51.82	51.82	45.08		
F1	3 TAIT STREET	38.17	38.17	33.21		
F5	STANLEY HALL	40.08	40.08	34.87		
F7	24 LONDON ROAD	49.80	49.80	43.33		
F11	5 ST NICHOLAS STREET	26.80	26.80	23.32		
Mean		41.86	41.86	36.42		

4.7 Overview of the air quality modelling

4.7.1 Summary of the models used

The air quality impact from roads has been assessed using our proprietary urban model (LADS Urban). There are two parts to this model:

- The Local Area Dispersion System (LADS) model. This model calculates background concentrations of oxides of nitrogen on a 1 km x 1 km grid. The estimates of emissions of oxides of nitrogen for each 1 km x 1 km area grid square were obtained from the 2003 National Atmospheric Emissions Inventory.
- The DISP model. This model is a tool for calculating atmospheric dispersion using a 10 m x 10 m x 3 m volume-source kernel derived from ADMS3.3 to represent elements of the road. The volume source depth takes account of the initial mixing caused by the turbulence induced by the vehicles. Estimates of emissions from vehicles have been calculated using the latest (and finalised for this round of Review and Assessment) vehicle emission factors.

Particular attention was paid to the avoidance of "double counting" of the contribution from major roads in the modelled areas. Thus the emissions from sections of roads modelled using DISP were removed from the LADS inventory.

Hourly sequential meteorological data for 2006 for Carlisle Airport, approximately 10 km east northeast of Carlisle was used. A surface roughness of 1 m was used in the modelling to represent the urban conditions corresponding to the most exposed sites. An intelligent gridding system was used with receptors at 10 m intervals on a rectangular grid within 150 m of the modelled roads and more widely spaced receptors elsewhere.

A rural background oxides of nitrogen concentration of 6.9 μg m⁻³ for 2006 based on measurements from the High Muffles Automatic Urban and Rural Network site was added to the modelled concentrations.

4.7.2 Validation and verification of the model

In simple terms, model validation is where the model is tested at a range of locations and is judged suitable to use for a given application. The modelling approach used in this assessment has been validated, and used in numerous **AEA** air quality review and assessments.

Verification of the model involves comparison of the modelled results with any local monitoring data at relevant locations. Table 4.5 compares modelled predictions using LADS Urban nitrogen dioxide concentrations with measured values at the Carlisle continuous monitoring sites.

Table 4.5: Comparison of modelled and measured concentrations, 2006

	Nitrogen dioxide		
Site	Modelled	Measured	Difference
Paddy's Market	31.4	32.1	-2.1
Stanwix Bank	43.7	41.3	5.8

The model captures well the measured nitrogen dioxide concentrations at the two automatic monitor locations. The agreement between model predictions and adjusted diffusion tube data in Carlisle is good. Table 4.6 below and Figure 4.1 illustrate the comparison between the model and diffusion tubes. On average, the diffusion tubes are found to be 6.4% greater than the model predicted values, and the model predicts within 25% of the diffusion tube value at nearly 75% of the sites.

Table 4.6: Comparison of modelled and diffusion tube monitored nitrogen dioxide concentrations, 2006

Site Number	Site	Easting, m	Northing, m	Concentration, ug m ⁻³		
				Model predicted	Diffusion Tubes (adjusted)	Difference, %
Area B						
В3	SHADDONMILL	339537	555613	29.65	21.67	36.82
B4	DALSTON ROAD	339434	555638	48.08	47.27	1.70
B5	8 JUNCTION ST	339613	555587	33.73	32.55	3.63
В6	41 CHARLOTTE ST	339731	555526	27.77	38.06	-27.05
B7	12 CURROCK STREET	340205	555198	36.55	41.11	-11.09
B10	24 DALSTON ROAD	339347	555422	27.08	19.79	36.83
B12	DENTON/CHAR	339921	555406	33.48	31.48	6.35
Area E						
E2	BRIDGE STREET	339449	556010	34.15	39.40	-13.33
E4	JOHN STREET	339396	555947	33.25	38.83	-14.38
E8	IMPACT	339516	556024	42.07	50.30	-16.36
E9	KC	339405	555996	33.31	30.45	9.40
E12	3 WIGTON ROAD	339225	555821	43.29	40.10	7.96
E15	WIGTON ROAD 22	339091	555736	35.60	38.83	-8.32
E16	JOVIAL SAILOR	339141	555900	27.36	37.81	-27.63
E19	49 WIGTON ROAD	338953	555610	39.51	43.94	-10.06
E20	44 WIGTON ROAD	339023	555692	39.85	33.81	17.89
E22	FINKLE STREET	339834	556137	29.10	37.92	-23.25
Area F						
C4	BAR SOLO	340286	555622	37.31	36.22	2.99
C5	GRIFFEN	340298	555589	30.64	38.93	-21.30
F1	3 TAIT STREET	340482	555489	20.81	33.21	-37.32
F5	STANLEY HALL	340534	555409	35.17	34.87	0.85
F7	24 LONDON ROAD	340708	555240	37.01	43.33	-14.58
F11	5 ST NICHOLAS STREET	340654	555261	25.07	23.32	7.51
Average			33.91	36.23	-6.40	

Fig. 4.1: Regression analysis of modelled and diffusion tube measured nitrogen dioxide concentration in 2006

80 70 60 Model predicted 50 40 30 20 Diffusion tubes y = x10 **Automatic Monitor** 0 0 10 20 30 40 50 60 70 80

Nitrogen dioxide concentration, ug m⁻³

There are a number of possible explanations accounting for the discrepancies between monitor and model. Uncertainty regarding traffic speeds and queuing and congestion are likely to have lead to some errors in the calculation of emissions; local street canyons should have also contributed to the differences.

Monitor

4.7.3 Bias adjustment of the model

Bias adjustment is the process where the concentrations of the model are adjusted to agree with local air quality monitoring data. In this case, the model has provided good predictions of the continuous monitoring measured nitrogen dioxide concentrations without adjustment and so no adjustment has been made.

4.7.4 Model uncertainty

The results of dispersion modelling of pollutant concentrations are necessarily uncertain because of the uncertainties in the estimation of rates of emission, meteorological data and dispersion conditions. Table 4.6 shows confidence levels for modelled nitrogen dioxide concentrations based on a statistical analysis of a comparison of modelled and measured concentrations in London (LAQM.TG(03)). In this report, we present predicted concentrations as isopleths (lines of constant concentration) superimposed on a map of the local area. The concentration values selected reflect the uncertainty bands shown in Table 4.7. Predicted concentrations in excess of 40 μg m $^{-3}$ indicate that there is more than 50 % chance of exceeding the annual average objective for nitrogen dioxide. Public exposure in these areas should be considered in order to assess whether it will be necessary to declare an Air Quality Management Area for nitrogen dioxide.

Table 4.7: Confidence levels for modelled concentrations for future years based on symmetrical concentration intervals and concentration intervals derived purely from the statistics

Description	Chance of exceeding objective	Annual average objective
Very unlikely	Less than 5%	< 28
Unlikely	5 to 20%	28 to 34
Possible	20 to 50%	34 to 40
Probable	50 to 80%	40 to 46
Likely	80 to 95%	46 to 52
Very likely	More than 95%	> 52

4.8 Detailed modelling results

In this section, nitrogen dioxide concentrations modelled for 2006, and predicted for 2010 are presented as a series of colour plots. The plots show the areas identified in the Updating and Screening Assessment and where directed by Carlisle City Council. These are:

- Wigton Rd./ Newtown Rd./ Church St. junction;
- A595 Church St./ Bridge St./ Castleway
- Shaddongate/ Junction St./ Charlotte St./ Nelson Bridge/ James St.;
- The Crescent/ English St./ London Rd.

4.8.1 Wigton Rd./ Newtown Rd./ Church St. junction

Fig. 4.2 shows the modelled nitrogen dioxide concentrations for 2006 in Carlisle along Newtown Road and Wigton Road, and around the Wigton Road, Newtown Road, Church Street junction. The modelling has taken into account the queuing traffic, pedestrian crossings and bus stops. The plot shows that exceedences of the objective for nitrogen dioxide are not likely to have occurred in 2006 for residential properties along Newtown Road. However, along Wigton Road, particularly in the areas around the junction with Crummock Street, between Peel Street and Ashley Street, and at the junction of Wigton Road, Newtown Road and Church Street, it is probable that concentrations of nitrogen dioxide will exceed the objective.

At the junction of Wigton Road and Peel Street, the area of exceedence extends very close to the façade of the Post Office and Odd Nos. 69-95 Wigton Road. Between Peel Street and Ashley Street the area of exceedence covers the façades of buildings on the North and South sides of the road, of which the residential properties are at even numbers 26-52 Wigton Road and on the first floor of Nos. 35, 37 and 39a Wigton Road.

Concentrations around the junction of Wigton Rd., Newtown Rd. and Church St. reach more than 52 $\mu g \ m^{-3}$. Exceedences of the objective occur along the building facade on the south east side of the junction at odd Nos. 37 – 41 Church Street, however these are commercial properties.

There are several diffusion tubes within this region. The model predicted nitrogen dioxide concentration at the Jovial Sailor, Newtown Road is 27.36 μg m⁻³, a 28% under-prediction of the diffusion tube measurement of 38 μg m⁻³ at that site, which is below the objective. However, at the No. 3 Wigton Road site, the model predicts 43 μg m⁻³, within 8% of the diffusion tube measurement of 40.1 μg m⁻³. Therefore the model appears to perform adequately in the area of the Wigton Road, Newtown Road and Church Street junction. No. 3 Wigton Road is the first of a series of residential properties and thus possible exceedences may have occurred at this site.

Further South along Wigton Road, the model predicted nitrogen dioxide concentration at the No. 22 and No. 44 Wigton Road sites are 8% and 10% below the diffusion tube values. At the No. 49 Wigton Road site however, the model predicted concentration is 17% higher than the diffusion tube

AEA/ED05488

estimate. These values show adequate model performance in this area but may highlight the difficulties in accurately representing the queuing traffic in this region.

Fig 4.3 shows the predicted concentrations for 2010. This plot shows that nitrogen dioxide concentrations are expected to decrease so that the concentrations at residential properties along Wigton Road will fall below the objective.

It is therefore recommended that an AQMA should be declared to cover Wigton Road between Crummock Street and Ashley Street and extending to cover the properties: the Post Office and Odd Nos. 69 – 95 Wigton Road; Nos. 35, 37 and 39a, and even numbers 26 – 52 Wigton Road.

It is recommended that an AQMA not be declared to cover Newtown Road.

4.8.2 A595 Church St./ Bridge St./ Castleway

Fig. 4.4 shows the modelled nitrogen dioxide concentrations for 2006 in Carlisle along the A595 Church Street, Bridge Street and Castleway. The modelling has taken into account queuing traffic and bus stops. It has been assumed that during rush hour this length of the A595 is congested, slow moving traffic. Values exceeding the objective for nitrogen dioxide are found along most of this road length. However, an exceedence at a residential building façade is only likely to occur at the site of the Impact diffusion tube. At this site the model predicts a concentration of 42 μ g m⁻³, a 16% underprediction of the diffusion tube measurement of 50.3 μ g m⁻³. There could be a number of reasons for this discrepancy, one of which might be that the assumed queuing conditions for the peak hours of the day were under-representative. The model predicts concentrations within 26% of the diffusion tube estimates at the 5 sites along this length of the A595 and therefore appears to perfom reasonably. In addition the model agrees well with the automatic monitor at the Paddy's Market site within this area predicting 2% lower than the diffusion tube estimate.

The plot shows it is probable that exceedences of the objective for nitrogen dioxide occurred in 2006 for residential properties in the area.

Fig 4.5 shows the predicted concentrations for 2010. This plot shows that nitrogen dioxide concentrations are expected to decrease so that the concentrations at residential properties in the area will meet the objective.

It is recommended that Carlisle City Council consider an AQMA on the north side of the A595, northbound from the junction with Shaddongate and including the two properties on which the "Impact" diffusion tube is sited, Brewer House and Old Brewery House.

4.8.3 Shaddongate/ Junction St./ Charlotte St./ Nelson Bridge/ James St.;

Fig. 4.6 shows the modelled nitrogen dioxide concentrations for 2006 in the Shaddongate, Junction Street, Charlotte Street, Nelson Bridge and James Street area of Carlisle. The modelling has taken into account the queuing traffic, pedestrian crossings and bus stops. The predicted concentrations exceeded the objective of 40 μg m $^{-3}$ at the pedestrian crossing on Charlotte Street, around the junction of Charlotte Street and Nelson Bridge and at the junction of Nelson Bridge and James Street. However, the predicted areas of exceedence do not cover any residential properties. Concentrations in excess of 52 μg m $^{-3}$ were predicted in the vicinity of the Dalston Road/ Junction Street junction and the objective will be exceeded along the façade of buildings adjacent to Junction Street these include even Nos. 76 – 52 Dalston Road, Nos. 1 and 2 Newcastle Street, Nos. 1 and 2 Kendal Street, Nos. 1 – 6 Dixon Court, the public house on the corner of Dixon Court and Shaddongate and No 44 Shaddongate. The area of exceedence also lies very close to the façade of The Guard House and Linton House on Shaddongate.

Table 4.8: Comparison of modelled and diffusion tube monitored nitrogen dioxide concentrations in the Shaddongate, Junction Street, Charlotte Street, Nelson Bridge and James Street area of Carlisle

O:t-a		Faction	Newthern	Concentration, ug m ⁻³		D:#
Site Number	Site	Easting, m	Northing, m	Model predicted	Diffusion Tubes (adjusted)	Difference, %
В3	SHADDONMILL	339537	555613	29.65	21.67	36.82
B4	DALSTON ROAD	339434	555638	48.08	47.27	1.70
B5	8 JUNCTION ST	339613	555587	33.73	32.55	3.63
В6	41 CHARLOTTE ST	339731	555526	27.77	38.06	-27.05
B12	DENTON/CHAR	339921	555406	33.48	31.48	6.35

Table 4.8 shows the model predicts three of the five receptors in this area within 20%. There is good agreement at the Dalston Road site, which is located at the Dalston Road/ Junction Street junction. It is therefore concluded that the model is consistent with the available monitoring data around this junction. At the Shaddonmill diffusion tube site, on Junction Street, model predicted concentrations are 36% greater than the monitored value. It is likely that this difference results from a street canyon effect; the Shaddonmill building is a large 6 storey structure, whose façade runs in an approximate east-west plane. Since the prevailing wind direction at Carlisle is South-Southwest it is likely that the Shaddonmill will influence the dispersion of traffic emissions from the road beneath it. Alternatively or additionally, the queuing information provided by Carlisle City Council may not have been representative of the annual mean conditions. At the diffusion tube sited at 41 Charlotte Street, the model predicted nitrogen dioxide concentration is 27% lower than the monitored value. This site is located on Charlotte Street, adjacent to Millbourne Street, but traffic flows into Milbourne Street are likely to be small. However, even a small number of vehicles travelling east to west along Charlotte Street and queuing to turn right into Millbourne Street would influence the diffusion tube estimate at this site, particularly if many of the vehicles were HDVs.

Fig 4.7 shows the predicted concentrations for 2010. This plot shows that nitrogen dioxide concentrations are expected to decrease as a result: even Nos. 76 – 70, 60 and 58 Dalston Road; Nos. 1 – 6 Dixon Court; the public house on the corner of Dixon Court and Shaddongate; No. 44 Shaddongate; No. 1 Newcastle Street; No. 2 Kendal Street will fall below the objective of 40 $\mu g \ m^3$. However, predicted concentrations at No. 2 Newcastle Street, even Nos. 68 – 62 Dalston Road and No. 1 Kendal Street will continue to exceed the objective. Concentrations along the rest of Junction Street, Charlotte Street, Nelson Bridge and James Street will fall and the objective will be met along all of these roads.

It is recommended that an AQMA is declared to cover the junction of Dalston Road and Junction Street, Carlisle, and including even Nos. 76-52 Dalston Road, Nos. 1 and 2 Newcastle Street, Nos. 1 and 2 Kendal Street, Nos. 1-6 Dixon Court, the public house on the corner of Dixon Court and Shaddongate, No. 44 Shaddongate, The Guard House and Linton House Shaddongate.

4.8.4 The Crescent/ English St./ London Rd

Fig. 4.8 shows the modelled nitrogen dioxide concentrations for 2006 along The Crescent, English Street and the A6, London Road. The modelling has taken into account queuing data, pedestrian crossings and bus stops. The predicted concentrations show two areas of exceedence along the A6, one at the junction of Botchergate and St Nicholas Street and the other extending along London Road from Close Street to Grey Street. The area of exceedence at the junction of Botchergate and St Nicholas Street extends beyond the facades of odd Nos. 1-11 London Road. The second area extends beyond the building facades of odd Nos. 23-33 London Road. However, there is only one residential property within these areas, a first floor flat above No. 33 London Road.

AEA/ED05488

There are seven diffusion tubes located within this area and the model predicts nitrogen dioxide concentrations within 25% at six of these locations. The most significant difference occurs at the No. 3 Tait Sreet site, which is located around 32 m from the centre of the A6. The discrepancy in the nitrogen dioxide concentrations at this site is therefore likely due to its distance from the emission source represented in the model. No traffic flows or queuing on Tait Street was included in the model.

Fig 4.9 shows the predicted concentrations for 2010. This plot shows that nitrogen dioxide concentrations are expected to decrease so that the concentrations at odd Nos. 1-11 London Road will fall below the objective. The concentration at odd Nos. 23-33 London Road is, however, predicted to remain in exceedence of the objective.

It is recommended that an AQMA should be declared to cover the North side of the A6 from the junction of London Road with Blake Street, extending to cover No. 33 London Road.

4.9 Recommendation

It is recommended that Carlisle City Council consider declaring AQMAs for the following areas:

- To cover Wigton Road between Crummock Street and Ashley Street and extending to cover the properties: the Post Office and Odd Nos. 69 – 95 Wigton Road; Nos. 35, 37 and 39a, and even numbers 26 – 52 Wigton Road;
- The north side of the A595, northbound from the junction with Shaddongate and including the two properties on which the "Impact" diffusion tube is sited, Brewer House and Old Brewery House.
- To cover the junction of Dalston Road and Junction Street, Carlisle, and including even Nos. 76 52 Dalston Road, Nos. 1 and 2 Newcastle Street, Nos. 1 and 2 Kendal Street, Nos. 1 6 Dixon Court, the public house on the corner of Dixon Court and Shaddongate, No. 44 Shaddongate, The Guard House and Linton House Shaddongate.
- To cover the North side of the A6 from the junction London Road with Blake Street, extending to cover No. 33 London Road.

Fig.4.2: Modelled nitrogen dioxide concentrations in Wigton Rd./ Newtown Rd./ Church St. junction, 2006

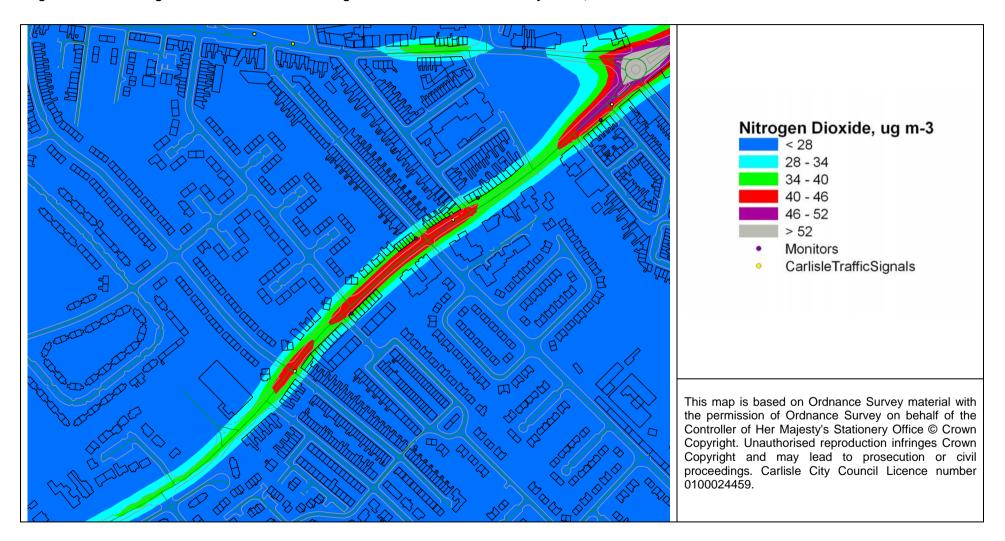


Fig.4.3: Modelled nitrogen dioxide concentrations in Wigton Rd./ Newtown Rd./ Church St. junction, 2010

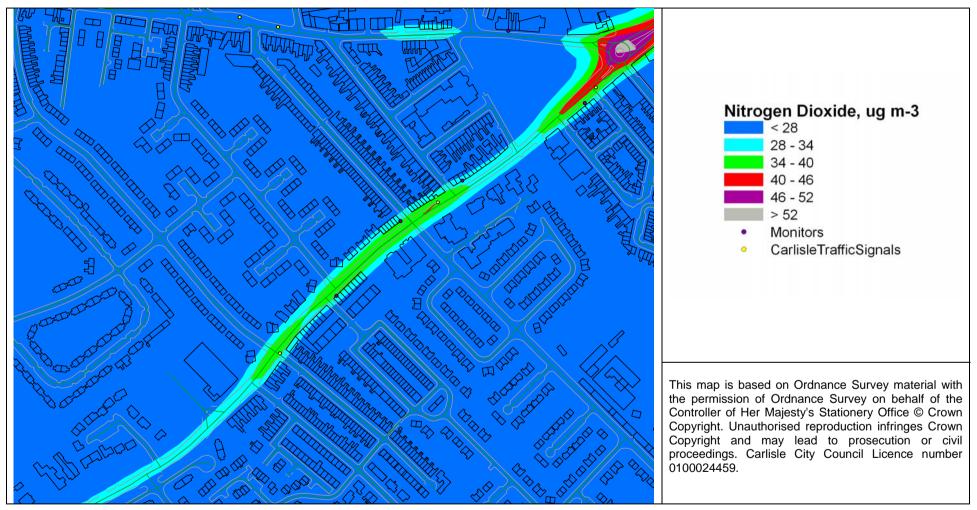


Fig.4.4: Modelled nitrogen dioxide concentrations in A595 Church St./ Bridge St./ Castleway, 2006

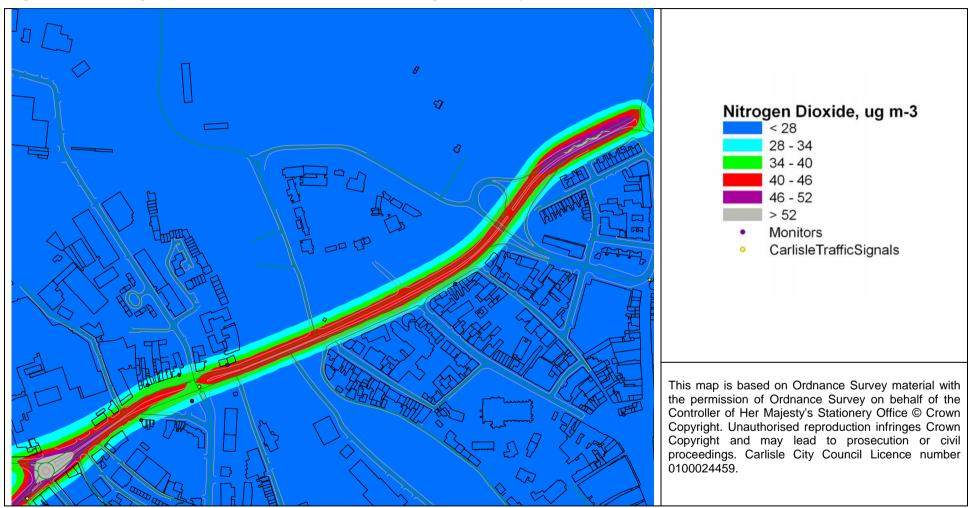
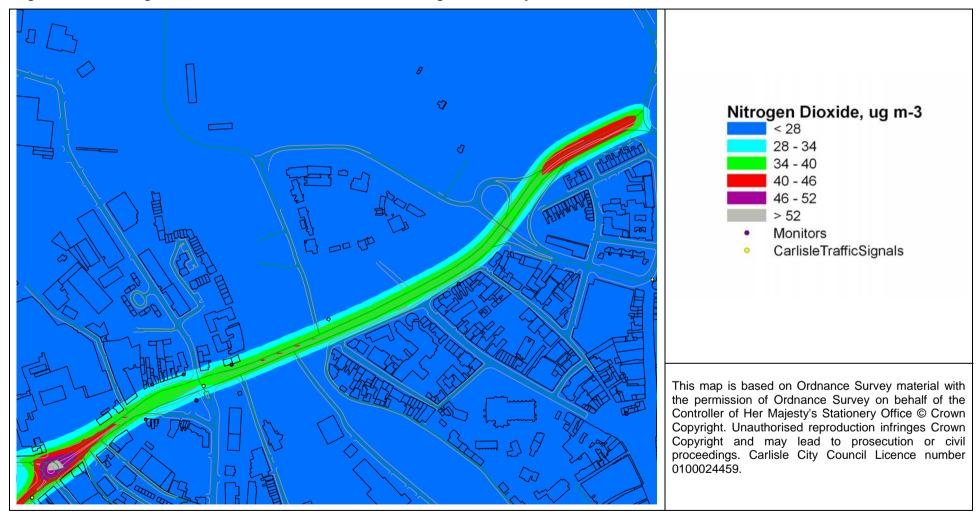



Fig.4.5: Modelled nitrogen dioxide concentrations in A595 Church St./ Bridge St./ Castleway, 2010

AEA/ED05488/Issue 1

Fig.4.6: Modelled nitrogen dioxide concentrations in Shaddongate/ Junction St./ Charlotte St./ Nelson Bridge/ James St., 2006

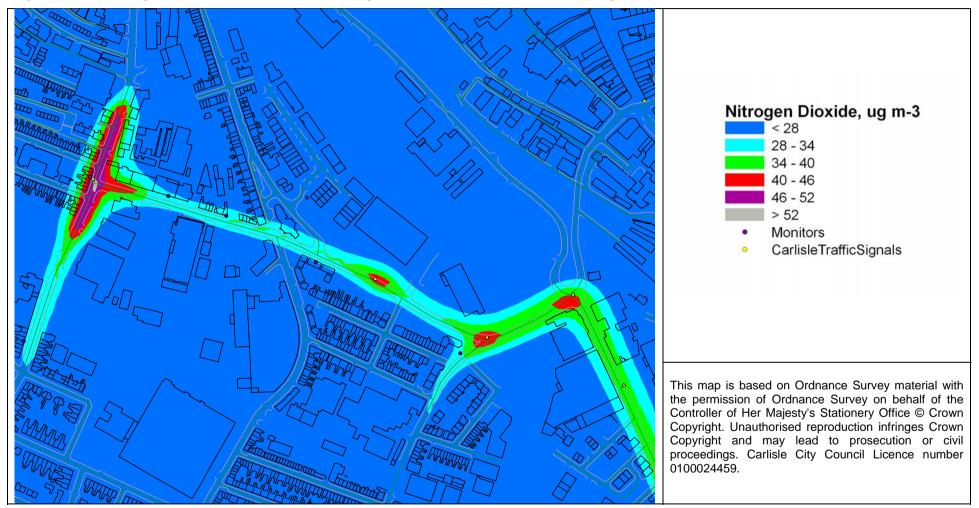


Fig.4.7: Modelled nitrogen dioxide concentrations in Shaddongate/ Junction St./ Charlotte St./ Nelson Bridge/ James St., 2010

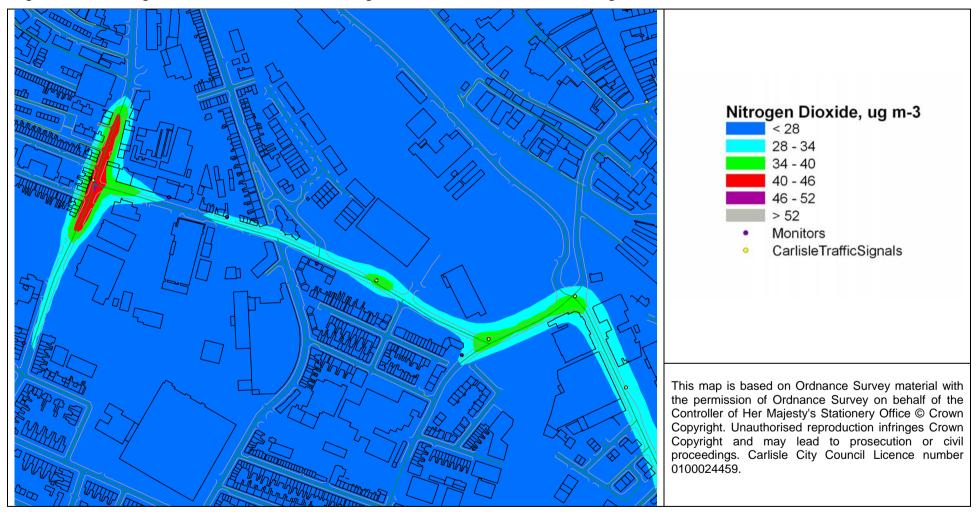


Fig.4.8: Modelled nitrogen dioxide concentrations in The Crescent/ English St./ London Rd, 2006

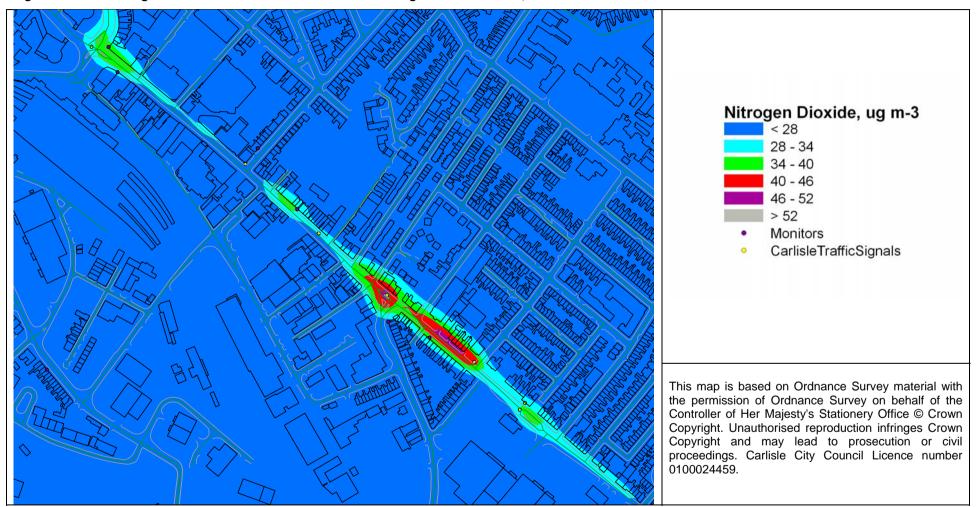
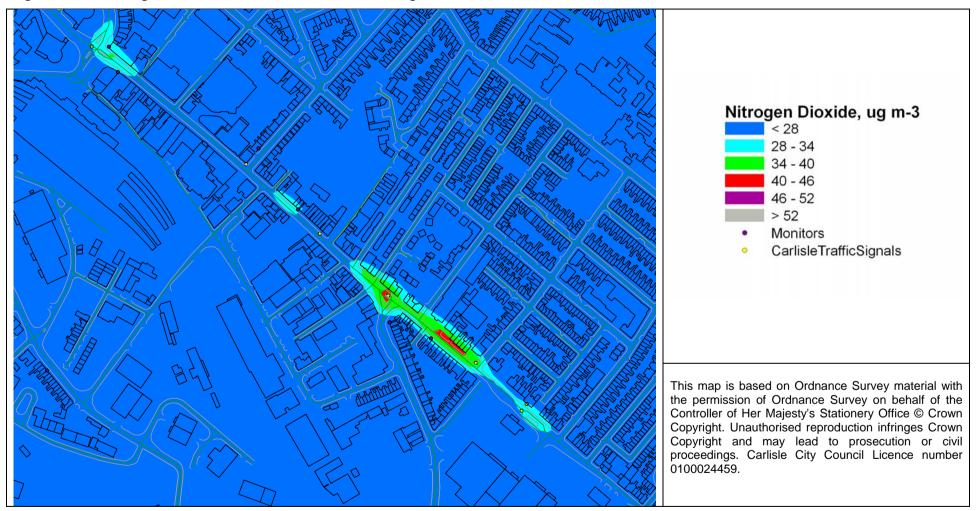



Fig.4.9: Modelled nitrogen dioxide concentrations in The Crescent/ English St./ London Rd, 2010

5 Conclusions

There are four areas of Carlisle where the assessment has shown that it is likely that the air quality objective for nitrogen dioxide is currently not met at:

- the Post Office and Odd Nos. 69 95 Wigton Road; Nos. 35, 37 and 39a, and even numbers 26 52 Wigton Road;
- the two properties on which the "Impact" diffusion tube is sited, Brewer House and Old Brewery House;
- even Nos. 76 52 Dalston Road, Nos. 1 and 2 Newcastle Street, Nos. 1 and 2 Kendal Street,
 Nos. 1 6 Dixon Court, the public house on the corner of Dixon Court and Shaddongate, No.
 44 Shaddongate, The Guard House and Linton House Shaddongate;
- the North side of the A6 from the junction of London Road and Blake Street, including No. 33 London Road.

It is therefore recommended that Carlisle City Council consider declaring AQMAs for the areas:

- To cover Wigton Road between Crummock Street and Ashley Street and extending to cover the properties: the Post Office and Odd Nos. 69 – 95 Wigton Road; Nos. 35, 37 and 39a, and even numbers 26 – 52 Wigton Road;
- The north side of the A595, northbound from the junction with Shaddongate and including the two properties on which the "Impact" diffusion tube is sited, Brewer House and Old Brewery House.
- To cover the junction of Dalston Road and Junction Street, Carlisle, and including even Nos. 76 52 Dalston Road, Nos. 1 and 2 Newcastle Street, Nos. 1 and 2 Kendal Street, Nos. 1 6 Dixon Court, the public house on the corner of Dixon Court and Shaddongate, No. 44 Shaddongate, The Guard House and Linton House Shaddongate.
- To cover the North side of the A6 from the junction of London Road and Blake Street, extending to cover No. 33 London Road.

It is recommended that when Carlisle City Council moves to a Further Assessment of these areas, a comprehensive assessment of the peak and off-peak queuing within Carlisle is carried out. It would also be advantageous to calculate an annual average diurnal traffic flow for the Carlisle area

Nitrogen dioxide concentrations along Newtown Road, Charlotte Street, Nelson Bridge, James Street, Warwick Road and The Crescent were also assessed. It is not recommended that Carlisle City Council should declare Air Quality Management Areas for these areas.

6 References

DETR (2000b) The Air Quality Strategy for England, Scotland, Wales and Northern Ireland. Department of the Environment, Transport and the Regions. Cm 4548, SE 2000/3, NIA 7.

The Air Quality Regulations 2000. The Air Quality Amendment Regulations 2002.

Part IV of the Environment Act 1995. Local Air Quality Management. Technical Guidance LAQM.TG(03) January 2003.

Carlisle City Council First Round Review and Assessment reports:

Stage 4 Report November 2006.

Carlisle City Council Second Round Review and Assessment reports:

Carlisle City Council Updating and Screening Assessment. May 2003.

Carlisle City Council Air Quality Detailed Assessment, 2004.

Carlisle City Council Air Quality Progress Report, May 2005.

Carlisle City Council Third Round Review and Assessment reports:

Carlisle City Council Updating and Screening Assessment May 2006.

Carlisle City Council Detailed Assessment, November 2006.

Maps of Estimated Ambient Air Pollution in 2001 and Projections for Other Years. http://www.airquality.co.uk/archive/laqm/tools.php

Design Manual For Roads and Bridges, Version 1.02. Highways Agency

Air Quality Expert Group. Nitrogen dioxide in the United Kingdom. Prepared for: Department for Environment, Food and Rural Affairs; Scottish Executive; Welsh Assembly Government; and Department of the Environment in Northern Ireland, 2004.

Air Quality Expert Group. Trends in Primary Nitrogen Dioxide in the UK. August 2006.

Appendix 1

Traffic data

Contents

Notes on Summary figures

Fig. A1.1: Summary of Annually Averaged Daily Traffic Flows and queue lengths; Wigton Road, Newtown Road, Caldewgate, Bridge Street, Castleway, Shaddongate, Dalston Road and Junction Street.

Fig. A1.2: Summary of Annually Averaged Daily Traffic Flows and Queue lengths; Charlotte Street, Denton Road, Nelson Bridge and James Street

Off-peak and rush hour queuing was based on estimates provided by Carlisle City Council.³

It is assumed that during rush hours the A595 between the Hardwicke Circus roundabout and the roundabout with Wigton Road and Newtown Road is a slow moving queue of traffic.

19654

= Traffic counts

 $^{^{3}}$ Results are relatively robust to rush hour queuing times in the range 1.5 hours – 2.0 hours (morning and evening), based on modelling of the AQMA 1.

Fig. A1.1: Summary of Annually Averaged Daily Traffic Flows and queue lengths; Wigton Road, Newtown Road, Caldewgate, Bridge Street, Castleway, Shaddongate, Dalston Road and Junction Street.

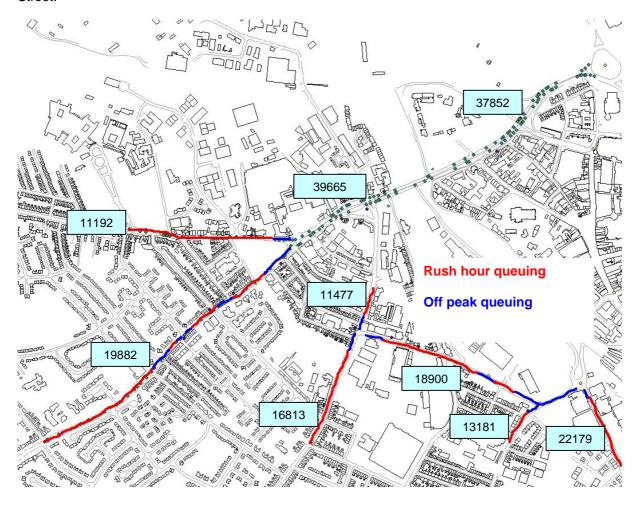
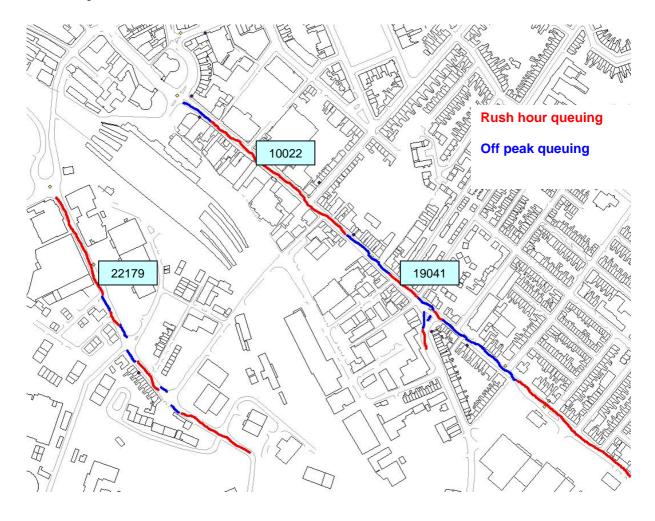



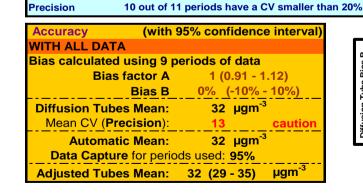
Fig. A1.2: Summary of Annually Averaged Daily Traffic Flows and queue lengths; James Street, Currock Street, A6 Botchergate and London Road.

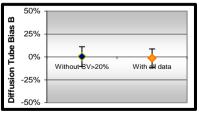
Appendix 2

Checking Precision and Accuracy of Triplicate Tubes

AEA Energy & Environment From the AEA group Automatic Method Data Quality Check

Diffusion Tubes Measurements									
Period	Start Date dd/mm/yyyy	End Date dd/mm/yyyy	Tube 1 µgm ⁻³	Tube 2 μgm ⁻³	Tube 3 μgm ⁻³	Triplicate Mean	Standard Deviation	Coefficient of Variation (CV)	95% CI of mean
1	05.01.2006	31.01.2006	50.0	47.0	47.0	48	1.7	4	4.3
2	31.01.2006	01.03.2006	48.0	48.0	46.0	47	1.2	2	2.9
3	01.03.2006	03.04.2006	51.0	44.0	44.0	46	4.0	9	10.0
4	03.04.2006	03.05.2006	31.0	31.0	27.0	30	2.3	8	5.7
5	03.05.2006	07.06.2006	23.0	28.0	32.0	28	4.5	16	11.2
6									
7	04.07.2006	01.08.2006	26.0	30.0	23.0	26	3.5	13	8.7
8	01.08.2006	31.08.2006	24.0	26.0	20.0	23	3.1	13	7.6
9	31.08.2006	03.10.2006	34.0	29.0	24.0	29	5.0	17	12.4
10	03.10.2006	30.10.2006	28.0	33.0	18.0	26	7.6	29	19.0
11	30.10.2006	28.11.2006	29.0	31.0	27.0	29	2.0	7	5.0
12	28.11.2006	04.01.2007	22.0	27.0	30.0	26	4.0	15	10.0
13									
It ic n	t is nacessary to have results for at least two tubes in order to calculate the precision of the measurements								


Automatic Method		Data Quality Check		
Period Mean	Data Capture (% DC)	Tubes Precision Check	Automatic Monitor Data	
		Good		
39.6	97.5	Good	Good	
41.8	97.8	Good	Good	
30.4	97.8	Good	Good	
		Good		
32	97.2	Good	Good	
28	97.9	Good	Good	
29	77.6	Good	Good	
31	97.9	Poor Precision	Good	
26	97.8	Good	Good	
26.9	97.8	Good	Good	
0::::::::::::::::::::::::::::::::::::::	II a	0	Good Overall	


It is necessary to have results for at least two tubes in order to calculate the precision of the measurements

Overall survey --> Good precision

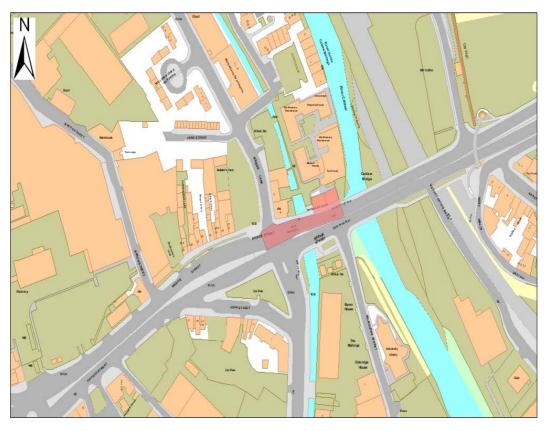
(Check average CV & DC from Accuracy calculations)

Accuracy	(with 95% confidence interva
without periods w	rith CV larger than 20%
Bias calculated us	ng 8 periods of data
Bias fac	etor A 0.99 (0.89 - 1.1)
E	ias B 1% (-9% - 12%)
Diffusion Tubes I	Mean: 32 μgm ⁻³
Mean CV (Preci	sion): 11 caution
Automatic I	Mean: 32 μgm ⁻³
Data Capture fo	r periods used: 95%
Adjusted Tubes I	Mean: 32 (29 - 35) µgm ⁻³

Jaume Targa
jaume.targa@aeat.co.uk
Version 03 - November 2006

Site Name/ ID:

APPENDIX 2



Proposed Air Quality Management Area Dalston Road

Not to Scale Date: 20/02/2008
© Crown Copyright. All rights reserved Carlisle City Council LA 0100/024459, 2005.

Proposed Air Quality Management Area Bridge Street

Not to Scale

Date: 20/02/2008

© Crown Copyright. All rights reserved Carlisle City Council LA 0100024459. 2005.

Proposed Air Quality Management Area London Road

Not to Scale Date: 20/02/2008
© Crown Copyright. All rights reserved Carlisle City Council LA 0100024459, 2005.

Proposed Air Quality Management Area London Road

Proposed Air Quality Management Area Wigton Road

Not to Scale

Date: 20/02/2008

© Crown Copyright. All rights reserved Carlisle City Council LA 0100024459. 2005.

CARLISLE LOCAL COMMITTEE HIGHWAYS & TRANSPORT WORKING GROUP	Paper No.
Meeting date: 15 th January 2008	
From: CUMBRIA HIGHWAYS	8

AIR QUALITY MANAGEMENT IN CARLISLE

1.0 EXECUTIVE SUMMARY

1.1 The Report advises the H&TWG of the proposals (arising from the report listed as the Background paper) to declare a further 4 Air Quality Management Zones in Carlisle, where the source of pollutants is chiefly road traffic. The Group are asked to recommend to the Local Committee whether to support or oppose the City Council's intended declarations.

2.0 POLICY POSITION, BUDGETARY AND EQUALITY IMPLICATIONS, AND LINKS TO COUNCIL PLAN

- 2.1 Air Quality Management is linked to County Council Plan Theme Improving and Enhancing the Environment. Thenational strategic policy is governed by The Environment Act 1995 which provides a framework for monitoring and control of Air Quality through set standards. It requires District Authoritiesto undertake reviews and where minimum standards are not met to introduce Air Quality Management Areas {AQMAs}.
- 2.2 There are no direct financial implications to the County Council, nor any equality implications.

3.0 RECOMMENDATION

- 3.1 That the Group recommend that the Local Committee support the proposed four additions Air Quality Management Areas at:
- 3.1.1 A595 Wigton Rd corridor (between Crummock St and Ashley St.);

- 3.1.2 A595 Bridge St (Shaddongate junction to Caldew Bridge);
- 3.1.3 B5299 Shaddongate/Junction St area;
- 3.1.4 A6 London Rd. (from junction of Blake St.(opp St John's church) to o/s No33 London Rd).

4.0 BACKGROUND

- 4.1 Full details of the assessments carried out and results, with conclusions therefrom are set out in the Background Paper. This may be obtained on request from Member Services if any member wishes either as a PDF Email file or paper copy (but is a 45 page very technical document).
- 4.2 AQMAs once declared are monitored annually, they can be a useful tool within the planning processes as it could for instance force developers to contribute to measures to improve air quality at one or more declared location by financially supporting actions needed to make improvements to Air Quality or even 'nil detriment'.
- 4.3 A negative aspect of AQMAs is they can have an adverse affect on development opportunity, as they do have the potential to restrict developments that have significant adverse traffic affect on an existing AQMA. Given the dispositon of these sites coupled with the existing AQMA on Currock St. taken together they could blight redevelopment of the land east of the River Caldew and north and west of the rail corridors. My personal view and hence advice is that the advantages outweigh the disadvantages as they could bring in significant developer funding for the south western relief road corridor.

5.0 **OPTIONS**

5.1 The Group could determine to recommend to the Local Committee that it does not support the introduction of one, more or all of the proposed AQMAs.

6.0 CONCLUSION

6.1 The report advises of 4 new Air Quality Management Areas proposed for Carlisle and recommends the Local Committee support them as Local Highways Authority.

T. Richard Hayward, Area Engineer (Carlisle) [January 2008]

APPENDICES

"No appendices".

IMPLICATIONS

Staffing: N/A

Financial: No direct implications Electoral Division: Castle (Carlisle)

Executive Decision (Not at Group Meeting)

Key Decision

If a Key Decision, is the proposal published in the current Forward Plan?

Is the decision exempt from call-in on grounds of urgency?

No*

If exempt from call-in, has the agreement of the Chair of the relevant Overview and Scrutiny Committee been sought or obtained?

No*

N/A*

Has this matter been considered by Overview and Scrutiny? If so, give details below.

N.B. If an executive decision is made, then a decision cannot be implemented until the expiry of the eighth working day after the date of the meeting – unless the decision is urgent and exempt from call-in and the Head of Member Services has obtained the necessary approvals.

PREVIOUS RELEVANT COUNCIL OR EXECUTIVE DECISIONS

[including Local Committees] "No previous relevant decisions".

CONSIDERATION BY OVERVIEW AND SCRUTINY

"Not considered by Overview and Scrutiny".

BACKGROUND PAPER

"Air Quality – Detailed Assessment Report, B5299 Dalston Rd, A595 Caldewgate and A6 London Rd" by AEA Energy & Environmental for Carlisle City Council, 2007.

Contact: Richard Hayward, Tel: 01228 607659

and e-mail address: richard.hayward1@cumbriacc.gov.uk

APPENDIX 4

Area 3C Ergon House Horseferry Road London, SW1P 2AL

Tel: 020 7238 1676

Website www.defra.gsi.gov.uk

Email tutu.aluko@defra.gsi.gov.uk

Ms Fiona Donald
Environmental Quality Officer
Environmental Protection Services
Carlisle City Council
Civic Centre
Carlisle.
CA3 8QG

defra

Department for Environment
Food and Rural Affairs

26 February 2008

Dear Ms Donald

LOCAL AIR QUALITY MANAGEMENT: 2007 DETAILED ASSESSMENT REPORT

Thank you for consulting the Secretary of State for Environment, Food and Rural Affairs on your Detailed Assessment report. Please find comments on the report attached.

The report has concluded that Air Quality Management Area will be required for Nitrogen Dioxide. On the basis of the evidence provided the conclusions reached are accepted. We would remind you that Defra expects AQMAs to be declared within four months of identification of the requirement for declaration. Please send us copies of the AQMA order when it becomes available.

If you have any specific queries about the comments contained in the appraisal report, we would advise that you initially contact the relevant help desk. Details on how to contact the help desk can be found in the appraisal report.

Yours sincerely

Tutu Aluko
AIR, ENVIRONMENT QUALITY DIVISION

Ref: **DA-295**

APPENDIX 4

Review & Assessment Appraisal Report

Report Prepared by: Carlisle City Council

Date Review & Assessment Report Issued: September 2007

The Report sets out the Detailed Assessment, which forms part of the Review & Assessment process required under the Environment Act 1995 and subsequent Regulations.

It covers nitrogen dioxide, and concludes that Air Quality Management Areas will be required for **nitrogen dioxide** in four locations.

On the basis of the evidence provided by the local authority, the conclusions reached are **accepted.**

Ref: **DA-295**

Commentary

The report is well structured and provides all of the information specified in

the Guidance.

The following specific item is drawn to the local authority's attention to help

inform future work:

1. Carlisle City Council's consultants recommend that a comprehensive

assessment of peak and off peak queuing behaviour is carried out and

that annual average diurnal traffic flow in the city is calculated.

Acquisition of this data will significantly aid the analysis of options and

development of remedial strategies and it is recommended that Carlisle

City Council instigate studies to acquire this data.

This commentary is not designed to deal with every aspect of the report. It highlights a number of issues that should help the local authority in carrying out further Review & Assessment work.

Issues can be followed up through the Review and Assessment helpdesk as follows:

Help desk telephone: 0117 328 3668

Help desk email: aqm-review@uwe.ac.uk
Web site: www.uwe.ac.uk/aqm/review