

REPORT TO EXECUTIVE

www.carlisle.gov.uk

PORTFOLIO AREA: ENVIRONMENT AND INFRASTRUCTURE

Date of Meeting:	12 April 2010		
Public			
Key Decision:	Yes	Recorded in Forward Plan:	Yes
,			
Inside Policy Fra	mework		
Title:	DRAFT EN	IERGY EFFICIENCY SUPPLEMENTARY PLANN	IING
	DOCUMEN	IT	
Report of:	Assistant	Director Economic Development	

Report reference: DS.10/10

Summary:

This draft Supplementary Planning Document is written to support the objectives of Planning Policy Statement 1 Supplement 'Planning and Climate Change' in helping to achieve the timetable for reducing carbon emissions from buildings. It is intended to encourage best practice in energy efficiency in new and existing developments amongst consultants, developers and interested parties. It should help to create environments that are in the long term more efficient, provide healthy living conditions and have the least use of unsustainable resources.

Recommendations:

- 1 Executive considers the draft of the Energy Efficiency Supplementary Planning Document
- 2 This report is made available for consideration by the Environment and Economy Overview and Scrutiny Panel at its meeting on the 24th June.
- 3 A further report is brought to Executive for its meeting on the 28th June to consider referring the Supplementary Planning Document to Council at its meeting on the 13th July for approval to consult.

Contact Officer:Pauline GoodridgeExt: 7182

1. BACKGROUND INFORMATION AND OPTIONS

- 1.1 Under the Planning and Compulsory Purchase Act 2004 the City Council has a statutory duty to provide the Local Development Framework to guide development within the district. This includes the provision of supplementary planning documents (SPDs) to amplify Council planning policies.
- 1.2 The documents for production within the Local Development Framework are set out in the Local Development Scheme. This includes the Energy Efficiency Supplementary Planning Document although the requirement to list Supplementary Planning Documents has now been removed by legislation.
- 1.3 The supplementary planning document expands on Carlisle District Local Plan Policy CP9 which refers to the production of a Supplementary Planning Document on Energy Efficiency and Conservation. The document also has regard to the Local Plan Policy CP5 Design listing nine key design principles against which all development proposals will be assessed.
- 1.4 Policy EM 16 Energy Conservation and Efficiency of the North West of England Plan Regional Spatial Strategy (RSS) (2008) encourages local authorities to ensure that their approach to energy is based on minimising consumption and demand, promoting maximum efficiency and minimising waste. Plans are asked to actively facilitate reductions in energy requirements and improvements in energy efficiency to deliver the national timetable for reducing emissions from non-domestic and domestic buildings.
- 1.5 The RSS Policy EM 18 Decentralised Energy Supply prescribes the 10% target for energy requirements from decentralised and renewable sources for major development, which is recommended in the draft SPD.
- 1.6 The draft Supplementary Planning Document is attached to this report. (Appendix A)

2 CONSULTATION

- 2.1 Consultation to Date.Consultation to date has been limited to within the City Council.
- 2.2 Consultation proposed.

A six week consultation is proposed on the draft SPD in line with current practice. This will follow consideration of the draft SPD by Executive and approval by Council.

3 **RECOMMENDATIONS**

- 1 Executive considers the draft of the Energy Efficiency Supplementary Planning Document
- 2 This report is made available for consideration by the Environment and Economy Overview and Scrutiny Panel at its meeting on the 24th June.
- 3 A further report is brought to Executive for its meeting on the 28th June to consider referring the Supplementary Planning Document to Council at its meeting on the 13th July for approval to consult.

4 REASONS FOR RECOMMENDATIONS

To provide further guidance on policies in the Regional Spatial Strategy and Carlisle District Local Plan.

5 IMPLICATIONS

- Staffing/Resources Within the existing resources of the Local Plans and Conservation Section.
- Financial There are no financial implications.
- Legal The preparation of a Supplementary Planning Document will comply with the requirements of planning legislation.
- Corporate The supplementary planning document will contribute towards creating more sustainable communities.
- Risk Management Without this SPD there may be a lack of clarity on the intention of policies in the Local Plan.
- Equality and Disability The document will be available in different formats on request.
- Environmental The overall effect of the SPD once adopted will be to improve the local environment.
- Crime and Disorder None.
- Impact on Customers The SPD will provide additional guidance, thus improving the service to customers of the Planning Service.

Contact Officer: Pauline Goodridge

Draft Energy Efficiency Supplementary Planning Document

April 2010

www.carlisle.gov.uk

Contents

Chapter 1 - Introduction	3
Chapter 2 – Background	4
Chapter 3 – Design and Applications	6
Chapter 4 - Energy Standards	20

Appendix 1	22
Appendix 2	26
Appendix 3	27
Appendix 4	29
Appendix 5	30
Appendix 6	34
Appendix 7	35
Appendix 8	37

Chapter 1 – Introduction

Role and Purpose of the document

1.1 This document is known as a supplementary planning document (SPD). It provides guidance on how new development in Carlisle should be designed and built so that it has a positive impact on the environment. It gives guidance on the choice of energy efficiency measures in the design of buildings. The minimum standards for major developments are outlined.

1.2 This SPD does not create new policy but provides detailed guidance to support Policy CP9 Development, Energy Conservation and Efficiency of the Carlisle District Local Plan 2001-2016. This SPD is referred to in paragraph 3.48. The SPD when adopted will be a material consideration in helping the Council make decisions about planning applications.

Appendix 1 lists the planning policies that this SPD is providing guidance on as well as other relevant policy guidance.

Chapter 2 - Background

2.1 It is widely accepted that changes are taking place to our climate and that human activities are contributing to it. Temperatures are rising marginally year by year with unprecedented warming over at least the last 50 years. The effects of recent warming are thought to contribute to the unpredictability of the weather and to extremely stormy sequences of weather and increased flooding. Sea levels are predicted to rise as melting from glaciers and sea ice continues which in turn threatens coastal areas and many cities. Climate change will have a direct effect on the supply and demand for energy; increasing summer temperatures will add to the demand for cooling and the impacts of extreme weather events may affect electricity generation and supply and the provision of gas.

2.2 The causes of climate change are several but one primary reason is that gases emitted into the atmosphere are rising significantly in part at least because of human influences. This means that more radiation is reflected back to the earth which in turn warms it further. An analogy is made with a greenhouse; greenhouse gas concentrations in the atmosphere are rising well above pre-industrial levels. Carbon dioxide is the main greenhouse gas. Of Cumbrian greenhouse gas emissions 75% is carbon dioxide, 17% is methane and 6% is nitrous oxide. Methane is produced by the agricultural sector and from the decomposition of waste. To put the carbon dioxide figure in perspective 27% of the UK's total carbon dioxide emissions come from the domestic housing sector and 25% come from road transport. The Climate Change Act 2008 sets a target to reduce carbon dioxide emissions to 60% of 1990 levels by 2050. Between 2003 and 2007 greenhouse gas emissions were falling at less than one per cent annually. Reductions in emissions over the last two years are the result of the recession rather than any sign of real progress in the rate of emission reduction.

2.3 It is now well acknowledged that about half of the UK's greenhouse gas emissions come from buildings, from generating the energy which is used in buildings. The Home Energy Conservation Act which came into force in 1996 introduced targets to reduce carbon dioxide emissions and improve domestic energy efficiency by 30% by 2010. The Government's Committee on Climate Change has called for a 35% reduction in emissions from homes by 2022 compared with 2007. The Climate Change Act 2008 set legally binding targets for greenhouse gas emissions of at least 80% by 2050 and reductions in carbon dioxide emissions of at least 26% by 2020 against the 1990 baseline. Progressive improvements to existing homes and to new homes are now urgently needed in order to minimise any possible further increases in carbon emissions. It is vital to consider sustainability and the energy efficiency of the built stock, therefore, at the outset of any project. An appropriate design and suitable building materials can effectively improve energy efficiency and reduce energy demand for heating, lighting and cooling. 2.4 The government believes that it is just as important that new commercial development addresses the challenges posed by climate change and to achieve substantial reductions in carbon emissions over the next decade.

2.5 The City Council in January 2007 signed the Nottingham Declaration on Climate Change and has developed a Climate Change Strategy. The Strategy has two aims: to lead by example on tackling climate change and to work in partnership with actions. The Carlisle Community Plan includes targets for reducing carbon emissions which are requirements of the National Indicator 186 on per capita reduction in CO_2 emissions in a local authority area.

Chapter 3- Design and Applications

Site Layout and Orientation

3.1 A site's layout and the orientation of buildings in relation to the sun and the prevailing wind direction can have a direct impact on the demand for heating in winter and cooling requirements in summer.

Design considerations

- Arrange as many roads as possible along an east to west alignment ; on north south roads detached units provide greater flexibility for maximising solar gain
- Orientate buildings to face south or with the longest face within 30 degrees of south to maximise solar gain during the winter
- South easterly orientation is preferable to south westerly as this maximises early morning solar gains
- If an overhang is proposed locate it on the south side of a building to provide summer shade
- Avoid buildings that cast shadows over south elevations: locate taller buildings to the north of the site and shorter buildings to the south
- Allow 21 metres between 2 storey properties to allow good solar access all year

Building Design and Layout

3.2 The advice above could result in a linear layout but an appropriate design solution may be to integrate a broad range of building styles with varying eave and ridge heights. A linear street may cause wind channelling which can increase wind speeds. A varied layout with curving streets and mews courtyards can help to prevent wind disturbance and provide some natural shelter.

Design consideration

• Use the natural topography

3.3 Opportunities should be taken to set new buildings into existing groups and settlements and to locate at the foot of slopes which may give some shelter and protection. Integrating buildings around existing topography and building groups can help to soften the appearance of a new development by providing a degree of screening.

3.4 Landscaping through trees and shrubs can be designed as part of the development, to soften it in the environment and to provide summer shade. Native

planting should be used wherever possible. Deciduous trees provide shade in summer without compromising light and solar heat in winter.

- Reduce exposed external walls by building terraces, apartment or office blocks and, to a lesser extent, semi-detached houses. To ensure that heat passes horizontally between properties the cavity between properties should be capped in order to prevent heat rising vertically and escaping from the top of cavities.
- Maximise sunlight and daylight

3.5 North facing walls should incorporate minimal glazed areas to prevent unnecessary heat loss in winter.

 Habitable rooms used for living and working should be positioned on the south side of buildings; kitchens are better positioned on the north side to avoid excessive heat gain. Living rooms, lounges and main bedrooms should be located on the south side of buildings whilst non-habitable rooms such as halls, bathrooms and utility rooms should be located on the northern side of buildings and have smaller windows to reduce heat loss.

3.6 Setting buildings into the ground will give protection. Green roofs planted with suitable plants may reduce storm water run-off, increase sound proofing, filter water and increase biodiversity. Low-angled or flat roofs are ideal for this treatment.

Design considerations

- Reduce exposure of buildings to the environment
- Reduce wind disturbance

3.7 Linear streets can cause wind channelling and encourage increased wind speeds. Curved streets and roads, mews and courtyards can help prevent wind disturbance and provide some natural shelter.

Design consideration

• Design in natural ventilation

3.8 Features such as opening windows, achieving cross ventilation with openings on opposite walls and the provision of central thermal chimneys will assist in the provision of cooling in summer.

Design considerations

- As a general rule windows on dwellings should be around 15% of a room's floor area for adequate daylighting
- Avoid over-sized windows (i.e. more than 50% of the overall facade) if excessive heat gain or loss is to be avoided
- Use neutral solar control glass to minimise solar heat gain in the summer whilst maximising natural daylight
- Green roofs which have been surfaced with a growing medium and on which plant material is encouraged to grow benefit biodiversity, can reduce storm water runoff, reduce heat loss from buildings and remove pollutants from the air. In practice grass, sedum mats and mosses tend to be most appropriate.
- Use energy efficient heating systems and lighting Under Part L of the Building Regulations residential developers are required to install condensing boilers. The efficiency of these boilers can be increased by installing heat controls that allow temperatures to be controlled in different parts of buildings. Energy efficient light fittings take low energy light bulbs which use a ballast or transformer fitted into the base of the light fittings. These control the supply of electricity to the bulb and lead to significant reductions in amounts of electricity used.
- Make the most of the sun to generate electricity.

Applications

Solar power

3.9 **Solar energy** can be used to produce electricity, heat water or for space heating and emits no climate change gases. The technology will work on cloudy days and does not require strong sunlight.

3.10 **Solar water heating systems** require a heat collector that is an absorption device usually covered in plastic or glass that can be either roof or wall mounted. The heated liquid (usually water with antifreeze) is passed through a coil in a hot water storage cylinder. The water in the cylinder can be supplied directly or raised to a higher temperature by a boiler or electric immersion heater.

 For optimum performance, panels should be located on a direction between southeast and southwest, on unshaded roofs on a pitch of 30 to 40 degrees. The collector contains fluid which is piped to a pre-heat tank, which is in turn is connected to a household hot water tank. A collector of 2 to 5 sq. metres in size is adequate for a typical domestic heat load. A system should provide 50 to 60% of annual domestic hot water requirements with most of the energy capture taking place between May and September. The evacuated tube collector is the most efficient type. Collectors can be mounted on the ground on free-standing support structures but can be visually intrusive. 3.11 Active solar cells (photovoltaics - PV) are used for electricity generation for appliances and lighting. These devices use advanced materials including usually silicon to generate electricity directly from daylight and sunlight. Cells can be retrofitted to roofs as glass-fronted panels, preferably on a roof pitch of 20 to 40 degrees on a southeast to southwest facing roof, or they can be incorporated into a new building as solar roof tiles. PV tiles can be used on the roof glass of conservatories. They can also be fitted into walls of houses as solar shingles or solar glass laminates to provide limited additional energy to the electrical system. It is important that no structures such as chimneys or dormer windows should cast shadows on an array. Any surplus electricity at times of peak energy production may be sold back to the supplier and exported to the grid. Shadows from buildings and trees will affect the efficiency of a photo-voltaic array. In situations where it is not desirable to have arrays fixed to a roof or if a roof is not suitable an alternative is to locate them off the building on an outbuilding, a street lighting column or on the ground on a frame. This will usually mean that it will be necessary to bury the electrical cable.

PV systems operate silently, require little maintenance and can last up to 20 years. Over a year a 1m² panel will produce 800 kWh of energy.

- A PV cell should be mounted on a roof or wall-mounted within 90 degrees of south; a 30 degree angle provides optimum solar collection
- PV cells can be mounted on flat roofs on a 30 degree angled frame to achieve maximum orientation and effectiveness
- The visual impact of a PV array can be reduced by concealing behind a parapet wall or on an outbuilding
- Regular cleaning of cells is required or output may be reduced by as much as 10%

3.12 Installing solar panels on houses does not generally require planning permission. However, permitted development rights do not necessarily apply in conservation areas or in areas of outstanding natural beauty. The installation of a PV array on a building listed for its special architectural merit or historic interest or on another building in its curtilage is will require listed building consent.

Wind Energy

3.13 **Wind energy** is currently the most developed of a number of renewable energy technologies. Wind energy can be used to generate electricity but including wind turbines on buildings can present design challenges and may cause problems such as noise and vibration for neighbouring properties. Most wind turbines will only work at wind speeds above 4 metres/second and must be positioned to face the prevailing wind, usually south-west. Building mounted micro turbines perform best when mounted on the gable end of buildings on a short pole, positioned above the ridgeline and preferably sited in remote, exposed rural locations. They are attached to poles which are fixed in place by wall brackets. An assessment needs to be made of the structural strength of a building before installation to ensure the weight can be borne and to ensure capability to stand the force of a 50 metre/second gust over a 10 minutes period. It is not advisable to attach them to chimney stacks as they are not constructed to take such structural loads. Standing turbines perform better than building mounted ones. However free standing turbines in built up areas do not perform particularly well due to insufficient wind resources, as buildings and trees may provide shields and screening from direct winds. The greatest potential for wind energy is to be found in the Solway estuary, in the North Pennine uplands west of Kielder Forest and in parts of the M6 corridor¹.

- The recommended position for a turbine is above roof ridge at a minimum height of 1.5 metres
- The weight of a turbine can be between 15 kg and 30 kg
- Turbines will only be viable where wind speeds exceed 6m/second as wind speeds below this would not generate enough power to justify the cost involved

3.14 The majority of microgeneration proposals in the historic environment require planning permission. The factors to consider when assessing the acceptability of energy developments in the setting of historic sites are visual dominance, scale, indivisibility, interruption to vistas and sight-lines, movement distraction, noise and light effects.

Ground source heating or cooling

3.15 A heat pump and coiled piping extract heat from the ground, air or water and transfer it to a heating distribution system such as under floor heating using an electric pump.

- The circuit of underground pipes contains a liquid which absorbs low-grade ground heat from near-surface soil which then provides a heat source for a heat pump located in a property. The system acts as an 'energy amplifier' but requires sufficient open land for horizontal trenches or adequate ground for vertical boreholes. Normally the loop of pipes is laid flat or coiled in trenches two metres deep. A licence from the Environment Agency may be required. There is no impact on the landscape as long as the boreholes or trenches are properly backfilled and tamped down.
- Maintenance needs are minimal
- Can provide 50% of hot water and 100% of space heating needs

Biomass heating and biomass combined heat and power (CHP)

¹ Cumbria Wind Energy Supplementary Planning Document

3.16 Biomass is defined as a mass of combustible material of organic origin in any volume of material. Biofuels fall into two main categories:

- Wood fuel including forest products, energy crops and short rotation coppice which are produced in woodpellets, wood chips and logs
- Non wood fuel including animal waste, industrial and biodegradable municipal products from food processing and high energy crops e.g. rape, sugar cane, maize

3.17 Biomass heating systems burn organic matter such as wood chips or agricultural residues to generate heat for space heating and hot water production. The most commonly used energy crops for this purpose are Willow, Poplar and Miscanthus (Elephant grass). These are thirsty crops which have a high water requirement and may cause localised lowering of the water table. The Government has suggested that 1 million hectares of land may be available for non-food crop production including energy crops.

3.18 The issues which need to be considered with the use of biomass include the availability of storage space for fuel, access to storage, the convenient location of the boiler and the availability of local fuel supplies, preferably within a 15 miles radius. The CO_2 emitted on combustion is balanced by the CO_2 captured in the fuel's growth. Deliveries to biomass stations are very frequent; for example a 10 MW plant would require around 20 deliveries a day by 38 tonne lorry. Delivery traffic should avoid historic settlements with narrow streets and fragile buildings and bridges. A domestic system may require fortnightly deliveries.

3.19 PPS 22 advises that care needs to be taken in siting biomass power stations to avoid impairing the settings of historic sites, sites of international importance such as World Heritage Sites and designed landscapes. Similarly, energy crop plantations have the potential to harm the visual amenity of the wider landscape.

3.20 CHP schemes, usually designed for the heating of districts or areas, can run on a number of fuel types such as gas or diesel fuel. The primary product is electricity. They are capable of achieving 70% to 90% efficiency and are particularly suitable for buildings which have a simultaneous demand for hot water and electricity such as swimming pools, leisure centres, offices and larger new housing schemes. The technology of CHP is developing rapidly and it is possible to use bio-diesel from vegetable sources as a fuel source. The University of Cumbria Newton Rigg campus is now successfully using biodiesel from oilseed and is researching the use of eucalypts as a test crop for biomass. The diesel produced is used to power farm vehicles and some minibuses. Some 8000 litres was produced in 2009.

• Biomass CHP is suitable for schemes where there is a high demand for heat most of the year such as in hospitals, leisure centres, hotels and some industrial premises.

- A local, reliable fuel source is necessary.
- Ample storage space for fuel is necessary together with access to the boiler for loading
- Biomass boilers need frequent cleaning and maintenance.
- A flue needs to project above the roofline.

Sunpipes

3.21 The designers of buildings with large roof areas and the necessity for an even distribution of light might consider the use of sunpipes fitted into the roofs, together with mirrors and prismatic reflectors. These devices help to reflect and enlarge available light, augmenting artificial light and sun and thus reduce electricity use.

	Solar water heating	Biomass	Heat pumps	Wind	Hydro	PV
Hot water	\checkmark	\checkmark	\checkmark	√*	√*	√*
Space heating		~	~	✓*	√*	√*
Electricity				✓	✓	✓
Predictability	Moderate	Excellent	Excellent	Poor	Good	Moderate
Correlation with heating demand **	Moderate	Good	Good	Good	Good	Poor
Lifespan	25 years	15 years	20 years	20 years	50 years	25 years
Cost	Modest	Modest	Moderate	Moderate	Expensive	Expensive

Figure 1: System Overview of Microgeneration Technologies

* Only where water and space heating systems are electric

** Heating demand is higher in winter

Sustainable Materials in Construction

3.22 The manufacture and transport of construction materials releases about 10% of the UK carbon dioxide emissions. The majority of construction waste goes to landfill sites, the greatest quantities are concrete, bricks, aggregate followed by metals.

Figure 2: Maximum transport distances for reclaimed materials

Material	Distance (miles)
Reclaimed tile	100
Recycled aggregates	150
Reclaimed brick	250
Reclaimed slate	300
Reclaimed timber	1,000
Reclaimed steel products	2,500

Source: WRAP (Waste and Resources Action Programme) Reclaimed Building Products Guide and BRE Green Guide to Specification

3.23 The energy used to construct buildings and run buildings can be reduced by using:

- Recovered materials that have been recycled and reclaimed WRAP has demonstrated that 12.5% of the materials' value of a construction project can be recycled.
- Materials that require low supplies of energy to produce

3.24 The use of sustainable timber which maintains biodiversity, productivity and ecological processes is recommended. Timber windows are much more environmentally friendly than PVC windows.

- Local supplies of stone, brick and clay tiles that reduce the travel distances needed to bring supplies in to a development site
- Use high thermal mass materials

3.25 The use of construction materials such as brick, concrete and stone which can store heat will reduce heat loss and release heat slowly. The Building Research Establishment has produced a *Green Guide to Housing Specification* which assesses the environmental performance of over 1200 specifications for six generic building types and components over a 60 year life-cycle.

Insulate buildings

Heat is lost in buildings through the roof, walls, floors and windows. Part L of the Building Regulations sets out the minimum levels of insulation required in new buildings.

3.26 Where possible, insulation made from recycled or natural sources such as sheep's wool should be used.

• Use energy efficient windows and doors

3.27 In conservation areas care should be taken to ensure that traditional details are observed. Original building fabric is considered important to the cultural value of a historic building and it may be more energy efficient to patch repair rather than to install new windows. It is generally difficult to introduce new materials without altering the character of a building. The problem is that most uPVC double-glazed windows do not replicate the traditional pattern, scale and proportions of traditional timber windows. The uPVC manufacturing process produces toxic by products and

the material is very difficult to recycle; it does not biodegrade when it becomes waste.

Water Conservation

3.28 Water is a finite resource. The United Kingdom is currently one of the top three most 'water stressed' countries in Europe. This means that it has less water available per head than almost every country. Personal water use has increased by 50% over the last 40 years and is now in the region of 150 litres per person per day.²

3.29 Water for domestic use is purified to very high standards using chemicals and energy, yet one-third of this water is just for flushing the toilet and another third for washing clothes.

Rainwater Harvesting

3.30 Rainwater storage systems harvest or collect rainwater for irrigation, garden watering, toilet flushing or car washing. The cost of a system is recovered in 10 to 15 years. This rainwater would otherwise have been lost through evaporation or into the ground. A common form of rainwater storage is a garden water butt which can often be conveniently located on rear elevations.

Grey water use

3.31 Grey water recycling systems reuse waste water from baths, showers, washing machines, kitchen sinks and hand wash basins and can save around 50% on mains water consumption. They can be incorporated in both existing and new properties for uses not requiring drinking water standard such as the watering of gardens and landscaped areas and toilet flushing. Greywater requires filtration and chemical or biological treatment prior to reuse. The Code for Sustainable Homes (Appendix 2) sets minimum standards for sustainable water use at each level.

- Grey water storage systems are best located in roof spaces or underground so that they do not affect the exterior of a building or streetscene.
- It is best to avoid setting up a system which will re-use water from kitchen sinks, washing machines and dishwashers as they collect grease and oil which is difficult to filter
- Bath and shower water can be collected, cleaned and reused to flush toilets; cleaned water is stored in a cistern behind the toilet. This reduces water use by up to 30%.
- Greywater should not be stored for more than a day or two before use.

² Ofwat

Water saving devices

- Install low flush and dual flush toilets
 Newer toilets have smaller cisterns and therefore use less water. Dual flush toilets use 6 litres and 4 litres or 4 litres and 2 litres of water.
- Install low water use appliances
 Low water use domestic white goods appliances can use significantly less water and energy.
- Install low flow spray taps or sensor-operated taps
- Install showers not baths
- 3.32 Showers generally use less than half the amount of water needed for a bath.
 - Control intermittent supplies Cut the amount of mains water being used for cooling, cleaning or washing finished articles, workspaces or vehicles by regulating the amount of water and not using a tap or hose which might be left running.
 - Install water meters
 - Install landscaping which uses drought-resistant plants and water-retaining mulches.

3.33 Waste water from buildings causes environmental damage by running off hard surfaces and entering drainage systems which may be full to capacity during storm periods. This situation may increase the risk of flooding to people and properties. The following system may alleviate the risks of flooding.

Sustainable Urban Drainage Systems

3.34 Sustainable urban drainage systems (SUDS) aim to manage urban water run off by slowing down runoff or by storing surface water. They aim also to improve the quality of water by treating or immobilising pollutants. They may encourage new development where existing sewerage systems are close to full capacity. There are four general systems of control:

 Permeable surfaces and filter drains; which allow rainwater and run off to infiltrate into permeable material below ground and provide storage; porous paving can be made from crushed stone or gravel, grasscrete, permeable concrete blocks or porous asphalt

- 2. Infiltration devices to allow water to soak into the ground such as trenches and basins; basins allow temporary storage for storm water and stone-filled trenches act as reservoirs from which water may filtrate gradually into the ground.
- 3. Filter strips, filter or French drains, green roofs and swales which are vegetated features; filter strips may handle storm water to a designated discharge point via a perforated pipe, allowing excess water to filtrate gradually into the ground
- 4. Detention basins and retention ponds to hold excess water after downpours and permit controlled discharge.

SUDS should be designed into development from the outset and can make a positive contribution to the landscape around a development

Hydro Power

3.35 Domestic hydropower systems are known as 'micro' hydro systems and are below 100 kilowatts in capacity. A hydro turbine works in the same way as a wind turbine, generating electricity as it rotates, with water rather than air driving the turbine. Some water is diverted out of the river or stream upstream of the turbine and channelled past the turbine, forcing it to turn and generate electricity. A recent study³ drew the conclusion that a substantial number of existing weirs and dams could provide hydro power with little additional ecological effect on rivers. The Solway Firth estuary is currently under consideration for a possible barrage site; the Solway Energy Gateway is proposing a 2 kilometre barrage between Bowness-on-Solway and Annan with 300 MW capacity. A suggestion has been made by the CA2 Green Group for a hydro plan for the weir on the River Caldew at Holme Head in Denton Holme.

- Hydro power requires the source to be relatively close to where the power will be used, or to a suitable grid connection
- Hydro systems are long lasting with minimum lifespans of over 50 years
- Turbines have visual impact and produce some noise; the problem can be resolved by putting the turbine into an outbuilding.

Waste and Recycling

3.36 Construction waste contributes to more than a third of the country's solid waste. Recycling construction waste including bricks, stone, slate and timber, and reusing existing buildings through refurbishment, repair and conversion, can address this sustainability issue. The selection of materials should be influenced by the possibility of future recycling at the end of the useful life of the building; materials

³ The Scope for Renewable Energy in Cumbria, Cumbria Vision

should be capable of separation for re-use. Locally sourced and reused materials reflect local character and minimise energy used in transportation.

3.37 Low impact materials include earth, straw, cork and hemp. Timber is a low impact product, provided it is sourced from certified sustainable sources.

3.38 Planning Policy Statement 10 – Sustainable Waste Management encourages local authorities to 'drive waste up the waste hierarchy':

Reduction	Waste prevention	Best environmental option
	Waste minimisation	
Re-use	On-site re-use	
	Off site re-use	
Recycling &	On site recycling	
Composting	Off site recycling	
Energy	Energy can be generated from	
Recovery	waste	
Disposal	Landfilling: duty of care	Worst environmental
		option

Figure 3: The Waste Management Hierarchy

3.39 The North West Regional Spatial Strategy Policies EM10 and EM11 encourage major development proposals to be submitted for permission with waste audits or site waste management plans⁴. These would explain how the generation of waste would be managed during and after the construction process. The audit would include the type and volume of waste that the development would generate and the steps taken to reduce, reuse and recycle any waste that is produced, during the development process and once the development is occupied. This advice is reiterated in Policy CP14 of the District Local Plan 2001-2016.

• Provide space for waste facilities

3.40 Adequate space should be provided for all waste facilities including general waste, recyclable waste and compostable waste, although the latter is usually the responsibility of individual householders. Parking should not obstruct access to the facilities. Prominently sited bins can detract from the appearance of areas. Waste storage facilities should be designed to reflect the character of developments and areas or appropriately screened.

• Road widths and turning heads should be able to accommodate waste collection vehicles

⁴ DTI: Voluntary Code of Practice – Guidance for Construction Contractors and Clients on Site Waste Management Plans

 Before demolition of a building developers should conduct an appraisal of materials that can be recovered using the Institute of Civil Engineers Demolition Protocol. Demolition wastes can be re-used for lower quality fill uses e.g as a concrete aggregate or for access roads and footpaths. WRAP (Waste and Resources Action Programme) has established the validity of setting a requirement for recycled content of 12% of the materials' value in house building construction projects.

Sustainable Travel

3.41 The Government has a key sustainability objective⁵ to ensure that jobs, shops, leisure facilities and services are accessible by public transport, walking and cycling. Local authorities are encouraged to give accessibility to development sites and areas a very high priority, ensuring that they offer safe, easy access by a range of transport modes and not exclusively by car. This ensures that efficiency in energy use is encouraged.

3.42 The Carlisle Area summary for the County Council's Local Transport Plan 2 for 2005/06-2011/12 states that 78% of the population is able to access (within 800 metres) an hourly or better bus service during weekdays (Department of Transport), although this figures drops to 71% for evening services. The Plan points out that the cycle route network is discontinuous which is recognised in the Council's Movement strategy and Cycling Development Action Plan. The Sustrans Connect2 cycle project (2008) for the city incorporates two major schemes: a new crossing of the River Eden and a link from Currock to the Caldew Riverside Path. The scheme has monies from the Lottery Fund (£975,000) and is due to be completed by 2013. It will provide safer routes for cyclists and improve health by encouraging physical activity and by giving easier access to green areas. The Petteril Valley cycleway scheme linking residential areas with commercial areas including the City Centre is being implemented over a period of several years from 2008. Section 106 money was obtained from a housing development on a site at Brisco Meadows which has made a contribution towards the cost of the scheme.

- Ensure the efficient use of land by seeking, where possible, a mix of uses
- Employment sites and uses with high travel demands such as retail, offices, commercial leisure, hospitals and conference facilities should be in locations that are highly accessible by public transport, reducing the need to travel by car
- The Transport Strategy encouraged for Ecotowns suggests that every home should be no more than 400 metres from a bus stop and no more than 400 metres from local shops, schools and medical facilities.

⁵ Planning Policy Statement 13: Transport

- New employment generators must provide cycle facilities and where possible improve links to existing cycling infrastructure including the main north-south Connect 2 cycleway through Carlisle.
- Brampton and Longtown cycle networks need definition and encouragement will be given to cycle and pedestrian links which will implement these networks.
- The preparation of Work Travel Plans is encouraged by major employers.
- Development proposals of the following sizes will require Travel Plans:
 - 1. Retail and indoor leisure facilities of 1,000 m² or more
 - 2. Industrial development over 5,000 m² and warehousing/ distribution developments in excess of 10,000 m²
 - 3. Office, education and health services development over 2,500 m²
 - 4. New and expanded school facilities

Chapter 4 - Energy Standards

Putting energy efficiency into practice

4.1 The Climate Change Act set targets for reducing carbon dioxide emissions: 30% by 2020, rising to 60% by 2050. Currently 40 to 50% of our carbon emissions are from energy use in buildings. Although new homes make up less than one per cent of the stock per year it is estimated that by 2050 as much as a third of the housing stock could be built between now and then. It is essential therefore that new buildings should be designed and built to higher standards.

4.2 The Planning and Energy Act 2008 enabled local planning authorities to set requirements for energy use and energy efficiency in local development plans as follows:

- A proportion of energy used in development in the area to be energy from renewable sources in the locality of the development;
- A proportion of energy used in development in the area to be low carbon energy from **sources in the locality of the development**;
- Development in the area to comply with energy efficiency standards that exceed the energy requirements of Building Regulations.

Renewable Energy in new developments

4.3 The Building Regulations set minimum acceptable standards. Reducing the need for energy and increasing efficiency will be the vital first step to achieving carbon reduction as the resources that energy production are based on, such as oil and gas, become scarcer or cease to be supplied. The Regional Spatial Strategy has set a target of 20% of electricity in the region to be produced from renewable energy sources by 2020.

4.4 Given the areas of woodland and forest in the east of the District wood fuel is a suitable fuel source. Energy from waves, solar, wind and ground source heat pumps can make significant contributions to increasing power from low carbon energy sources.

4.5 Whilst district combined heat and power schemes may be suitable for large new urban extensions decentralised schemes are suitable for rural areas where connections to the gas or electricity grid may not be possible or viable. Many renewable energy technologies are suitable for small-scale schemes and such schemes help communities to engage in and discuss energy issues.

4.6 The Regional Spatial Strategy Policy EM18 (Appendix 1) sets a target for decentralised and renewable or low-carbon energy in new development and

recommends the setting of local targets to achieve the regional target. Whilst the Local Development Framework's Core Strategy may provide the platform to debate appropriate standards of efficiency to be achieved in different types of new development a start may be made in this SPD and make an impression on the reductions needed by concentrating on major non-residential developments:

Standards for major commercial or non-residential development

The Council expects all major non-residential developments above a threshold of 1,000m² and/or a site are of 1 hectare or more to incorporate renewable energy production to provide at least 10% of the development's predicted energy requirements or where infrastructure is available the development should connect to a decentralised, renewable or low carbon energy supply.

Such major schemes should also be assessed by a BREEAM Buildings rating of 'Very good' or 'Excellent' at the design stage and post construction stage.

Appendix 1 Policy Background North West Sustainable Energy Strategy The North West of England Plan Regional Spatial Strategy to 2021

Policy EM 15

A Framework for Sustainable Energy in The North West

Plans and strategies should promote sustainable energy production and consumption in accordance with the principles of the Energy Hierarchy and within the Sustainable Energy Strategy. In line with the North West Sustainable Energy Strategy the North West aims to double its installed Combined Heat and Power (CHP) capacity by 2010 from 866 MWe to 1.5 GW, if economic conditions are feasible.

All public authorities should in their own proposals and schemes (including refurbishment) lead by example to emphasise their commitment to reducing the annual consumption of energy and the potential for sustainable energy generation, and facilitate the adoption of good practice by the widest range of local stakeholders.

Policy EM 16

Energy Conservation and Efficiency

Local Authorities, energy suppliers, construction companies, developers, transport providers and other organisations should ensure that their approach to energy is based on minimising consumption and demand, promoting maximum efficiency and minimum waste in all aspects of local planning, development and energy consumption.

Plans and strategies should actively facilitate reductions in energy requirements and improvements in energy efficiency by incorporating robust policies which support the delivery of the national timetable for reducing emissions from domestic and non-domestic buildings.

The Government recommends that the move towards a sustainable energy system should concentrate on reducing demand and increasing energy efficiency, which it believes play a bigger role in reducing CO_2 emissions than renewable energy and carbon trading combined.

Policy EM17

Renewable Energy

In line with the North West Sustainable Energy Strategy, by 2010 at least 10% (rising to at least 15% by 2015 and at least 20% by 2020) of the electricity which is supplied within the Region should be provided from renewable energy sources. To achieve, this new renewable energy capacity should be developed which will contribute towards the delivery of the indicative capacity targets set out.

Plans and strategies should seek to promote and encourage, rather than restrict, the use of renewable energy resources. Local planning authorities should give significant weight to the wider environmental, community and economic benefits of proposals for renewable energy schemes to:

- Mitigate the causes of climate change and minimise the need to consume finite natural resources
- Contribute towards the capacities set out in the tables.

Policy EM 18

Decentralised Energy Supply

Plans and strategies should encourage the use of decentralised and renewable or low-carbon energy in new development in order to contribute to the achievement of the targets set out. In particular, local authorities should, in their **Development Plan Documents** set out:

- Targets for the energy to be used in new development to come from decentralised and renewable or low-carbon energy sources, based on appropriate evidence and viability assessments; and
- The type and size of development to which the target will be applied.

In advance of local targets being set, new non residential developments above a threshold of 1,000m² and all residential developments comprising 10 or more units should secure at least 10% of their predicted energy requirements from decentralised and renewable or low-carbon sources, unless it can be demonstrated by the applicant, having regard to the type of development involved and its design, that this is not feasible or viable.

Policy RT1

Integrated Transport Networks

Develop sustainable, integrated and accessible solutions for all users. Plans and strategies should focus on improving journey time reliability in transport corridors and enhancing the accessibility of the region's gateways and interchanges.

Policy RT2

Managing Travel Demand

- Ensure that major new developments are located where there is good access to public transport, backed by effective provision for pedestrians and cyclists to minimise the need to travel by private car;
- Seek to reduce private car use through the introduction of 'smarter choices' and other incentives to change travel behaviour which should be developed alongside public transport, cycling and pedestrian network and service improvements;
- Consider the effective reallocation of road space in favour of public transport, pedestrians and cyclists alongside parking charges, enforcement and provision and other fiscal measures, including road user charging;
- Incorporate maximum parking standards.

Policy RT 9

Walking and Cycling

Local Authorities should work with partners to develop integrated networks of continuous, attractive and safe routes for walking and cycling to widen accessibility and capitalise on their potential environmental, social and health benefits.

Carlisle District Local Plan 2001-2016

Policy CP8 Renewable Energy

Proposals for renewable energy will be favourably considered provided that all of the following criteria are satisfied: 9 criteria are listed. (Page 36)

Policy CP9 Development, Energy Conservation and Efficiency

Development proposals should take into account the need for energy conservation and efficiency in their design, layout and choice of materials. The principles shall be introduced in the early stages of the design process in order to consider the orientation of buildings to maximise solar gain coupled with high levels of insulation to reduce heating costs. The efficient and effective use of land, including the reuse of existing buildings and the use of environmentally sustainable materials should also be encouraged. Landscaping schemes also may be used to shelter buildings in exposed positions to reduce heat loss.

These elements will contribute to the energy efficiency of a new development. Developers should also consider the possible incorporation of photovoltaic cells, active solar panels and other small-scale sources of renewable energy. Consideration should be given to recycled materials, waste minimisation and recycling measures within the design. Designers will be encouraged to include systems for collecting roof water to enable its re-use.

Appendix 2

Background Legislation and Documents:

Home Energy Conservation Act 1995

The Climate Change and Sustainable Energy Act 2006; The Climate Change Act 2008

Planning Policy Statement 1: Delivering Sustainable Development and the Supplement : Planning and Climate Change (2007), ODPM, 2005

Planning Policy Statement 10: Planning for Sustainable Waste Management, ODPM, 2005

Planning Policy Statement 13: Transport, ODPM, 2001

Planning Policy Statement 22 and the Supplement: Planning for Renewable Energy, ODPM, 2004

The UK Renewable Energy Strategy 2009

The UK Low Carbon Transition Plan (2009), Department of Energy and Climate Change

Cumbria Climate Change Strategy and Action Plan 2009-2014

Cumbria Local Transport Plan 2 2006/7-2011/12

Carlisle City Council Carbon Management Programme Carbon Management Plan 2008/9-2012/13

Carlisle Environmental Policy Statement

Appendix 3

Code for Sustainable Homes ⁶- Summary of Environmental Categories and Issues For Assessment

Categories	Issue
Energy and CO ₂ Emissions	Dwelling emission rate (M); Building fabric: at least 3 of the 5 key elements of roof, external walls, internal walls, floors and windows specified to achieve a Building Research Establishment Green Guide rating ; Drying space; Energy-labelled white goods; External lighting; Low or zero carbon technologies; Cycle storage;
Water	Indoor water use (M); water use for levels 3 and 4 – maximum 105 litres per day; water use for levels 5 and 6 – maximum 80 litres per day. External water use;
Surface Water Run-off	Management of surface water runoff from developments (M) Flood risk
Waste	Storage of non-recyclable waste and recyclable household waste (M); composting;
Pollution	NOX emissions;
Ecology	Ecological value of site; Ecological enhancement; Protection of ecological features; Change in ecological value of site;

(M) denotes issues with mandatory elements

The Code is an environmental impact rating system for housing and was introduced in England in 2007; whilst it is closely linked to the Building Regulations minimum standards for Code compliance have been set above the requirements of Building Regulations. From May 2008 all new houses are required to be rated on the Code by awarding stars, 1 to 6, based on performance against the sustainability categories. 36% of the Code assessment is solely related to energy. The code is compulsory for all public sector-funded schemes. The Code Level 3 is mandatory in 2010 under the Building Regulations.

⁶ Department for Communities and Local Government

Code For Sustainable Homes -	Estimated Costs	(2008) For Compliance
Code Foi Sustainable nomes -		(2000) FUI CUMPliance

Type of Property	CHS Level	Total Cost (£) 2008	% increase on 2006 Building Regulations
Detached (market town scenario with low flood risk)	3	£4,751	5%
	4	£11,593	13%
	5	£21,847	24%
	6	£37,817	41%
Flat (urban regeneration scenario)	3	£2,892	4%
,	4	£5,487	7%
	5	£10,264	13%
	6	£19,080	24%

Source: Cost Analysis of The Code for Sustainable Homes: Final Report, DCLG, 2008

Appendix 4

Breeam Assessment Of Buildings⁷

The assessment process was created in 1990 initially in two versions: for housing and offices.

It is updated regularly in line with the Building Regulations.

All versions look at and assess the same broad range of environmental impacts:

- Management
- Health and Wellbeing
- Energy
- Transport
- Water use
- Materials and Waste
- Landuse and ecology
- Pollution

There are a set of environmental weightings including benchmarks for CO₂ emissions; credits are awarded in each area to produce an overall score.

Buildings are rated on a final score and given a certificate:

PASS, GOOD, VERY GOOD, EXCELLENT, OUTSTANDING

⁷ www.breeam.org.uk

Appendix 5

Examples of Energy Efficiency Good Practice In the District

Reference: http://www.climatechangenorthwest.co.uk

http://www.sbnw.co.uk/

TALKIN TARN COUNTRY PARK

Region: Cumbria

Location: Brampton

More info: Talkin Tarn Country Park

Refurbishment of the site in 2006 used green technologies extensively. An innovative water source heat pump recovery system was installed to heat the Alexander boathouse. A new timber cabin educational facility

harvesting system. Under-floor heating and primary hot water is generated using an air source heat pump; and sun tubes supplement lighting.

Solar pv panels to the new warden's facility and workshop roof provide electricity. All the buildings feature thermafleece insulation, 'K' glass double glazing, low energy lighting and motion sensors.

In October 2007 the project was shortlisted for a Public Servant Sustainability Award.

TWO CASTLES HOUSING ASSOCIATION: ECO-HOMES AT BURGH-BY-SANDS

Region: Cumbria

Location: Burgh-by-Sands

More info: Two Castles Housing Association: eco-homes at Burgh-by-Sands

This is a greenfield scheme mix of affordable properties for rent and sale.

The scheme was constructed using the Kingspan TEK building system utilising structural insulated

panel technology (SIPs). The panels consist of two layers of board with foam insulation inside and they are used to build the entire shell of each house – the internal and external walls, the floors, and the roof. The system is delivered to site ready for erection; and the brickwork exterior is then constructed.

The houses' low U-values, their excellent air-tightness, the A-rated condensing boilers, and the dedicated low-energy lighting combined to earn a 'very good' BRE rating.

HESPIN WOOD LANDFILL GAS OPERATION

Region: Cumbria

Location: Hespin Wood near Carlisle

More info:

Hespin Wood landfill gas operation

Methane gas is a by-product of the decay and decomposition that occurs in landfill sites. At one time methane was regarded as a waste by-product. Then

climate change science brought to our attention the harmful effects of methane - that it is >20 times more effective than carbon dioxide in trapping heat in the atmosphere - escaping from landfill sites. Now, modern landfill sites can be designed in such a way as to capture the methane and make good use of it in generating electricity.

At Hespin Wood the captured methane drives a 1.3 Megawatt turbine, producing enough electricity to power 1,000+ homes.

LOW LUCKENS ORGANIC RESOURCE CENTRE

Region: Cumbria

Location: Roweltown, Carlisle

More info:

Low Luckens Organic Resource Centre

Low Luckens aims to:

- To promote sustainable farming, local healthy food and countryside;
- To provide opportunities for learning on the land to people of all ages and abilities.

Organic farming and renewable energy have a lot in common. Both shun intensive production systems in favour of sustainability. Both challenge the notion that such systems must be large scale, centralised and environmentally damaging. There are many renewable technologies, but at Low Luckens we have found wind and solar energy suit our requirements best. We maintain the Centre (open seven days) as a place which anyone can use for information.

Further details:http://www.lowluckensfarm.co.uk/

Brampton EcoHouse

Reference: http://www.sustainablehomes.co.uk/case_studies/brampton2.htm

The scheme comprises a detached 3 bed demonstration EcoHouse. This was built to offer practical experience of energy efficient and environmentally sustainable construction. It has been awarded an Excellent EcoHomes rating. Completed 2000.

The EcoHouse was developed in partnership with Brampton Rural Housing Society, Carlisle City Council and local architects, John Bodger and Stephen Crichton. The aim of the project was to design and build a house with significant environmental benefits, that was acceptable and affordable to residents, and easily replicable by small to medium scale builders or on a large scale.

An initial green specification was formulated, but proved too expensive. This specification was very green and it was recognised that compromise was necessary to achieve the project aims. The final specification was radically modified to include features that give the greatest environmental benefit for the least cost.

The project also aimed to raise environmental awareness within the building industry. Seminars and site visits were held during the design and construction phases of development.

Consideration was given to two different construction techniques: high thermal mass brick and block work; and low thermal mass timber frame. Timber frame was chosen, using a timber I beam system with a breathing wall. The panels were insulated on site with blown cellulose (recycled newspaper). The possibility of using I beams to construct the roof, and provide additional useable space was rejected on budget grounds.

To remove the use of UPVc, softwood windows are used, with low emissivity double glazing. Rainwater goods are galvanised steel. The high level of insulation and airtightness reduce significantly the need for conventional heating. However, it was considered that in terms of acceptability, residents would perceive the need for a heating source. In response to this a small gas fired central heating system is installed.

Ventilation is provided by low energy conventional extractor fans to the kitchen and bathroom.

Both rainwater recycling and solar panels were considered. Payback periods were too long and alternative solutions provide more cost effective environmental savings. Low flow taps and shower head are fitted, along with low flush 6 litre WCs to help conserve water. Rainwater from the roof is collected in water butts for use in the garden, offering the option for residents to save more water. Low energy light fittings using CFLs are used throughout.

The building is part clad with reclaimed bricks, with upper levels being clad in low maintenance, sustainable timber (larch). The roof is covered in reclaimed Welsh slate.

The house cost around £68,500, plus fees. Although this appears to be relatively expensive, it is largely due to the house being:

- A prototype
- An individual detached house

If the house design was to be repeated on a larger scale, or incorporated into a terraced design, considerable cost savings could be made.

The process has shown that simple is best. The greatest environmental savings can be made in the building's basic structure, rather than the services or technology. It was quickly learnt that the initial house was over designed for its purpose (Mark 1). In trying to make every aspect as green as possible some features and systems that were inherently expensive, were built in. A re-think resulted in a more practical solution.

It is the first building to achieve an Excellent EcoHomes rating. Ironically the changes made between the expensive mark 1 design and the house built did not affect the EcoHomes rating. But it did ensure the house was more affordable and easily replicable. The problems of perceived difficulty should not be under estimated. Although building techniques are simple, builders' unfamiliarity with them raised time and cost concerns. This led to builders either not tendering or loading the costs.

Sustainable does not mean just choosing the right materials and designing for low energy use. To be genuinely sustainable the design of the house needs to be affordable and attractive to people who normally don't consider environmental matters important. It also has to make business sense as well as 'green' sense. In the end it was felt that the house design is viable in a business sense, as well as offering very significant energy savings and environmental benefits.

Appendix 6

References

Department for Communities and Local Government, **Code for Sustainable Homes and Technical Guide**, 2008

Department for Communities and Local Government, **Cost Analysis of the Code** for Sustainable Homes: Final Report, 2008

Sustainable Development Commission, Wind Power in the UK, 2005

London Climate Change Partnership, **Adapting to climate change: a checklist for development,** 2005

TCPA & CHPA, **Community Energy: Urban Planning for a Low Carbon Future,** 2008

TCPA, Climate change adaptation by design, 2007

TCPA, Biodiversity by Design, 2004

Energy Saving Trust, **Meeting the 10 per cent target for renewable energy in housing – a guide for developers and planners,** CE190, 2006

The Beacons Low Emission Strategies Group, Low Emission Strategies, 2008

North West Regional Assembly, **Delivering Sustainable Housing in the North West**, 2008

Changeworks, Energy Heritage: a guide to improving energy efficiency in traditional and historic homes, 2008

Cumbria Strategic Partnership, **Cumbria Climate Change Action Plan 2009-2014**, 2009

Cumbria Vision, The scope for renewable energy in Cumbria, 2010

Defra, Climate Change: The UK Programme, 2006

DTI, Meeting the energy challenge: a white paper on energy, 2007

DTI, Photovoltaics in buildings: guide to the installation of PV systems, 2006

DTI, Photovoltaics in buildings: a design guide, 1999

Intergovernmental Panel on Climate Change, Climate Change 2007

Committee on Climate Change, Building a low-carbon economy, 2008

Appendix 7 Sources of Further Information

Brampton Ecohouse	www.brampton-ecohouse.org.uk
British Hydropower Association	www.british-hydro.org.uk
British Wind Energy Association	www.bwea.com
Building for Life	www.buildingforlife.org.uk
Building Research Establishment (bre)	<u>www.bre.co.uk</u> Tel. 0161 295 5076
Carbon calculation	www.dev.nwdacarboncalculator.com
Centre for Alternative Technology	www.cat.org.uk
Combined Heat & Power Association	www.chpa.co.uk Tel. 0207 828 4077
Commission for Architecture and the Built	Environment (CABE) <u>www.cabe.org.uk</u>
Cumbria Community Energy Trust 861316	www.cumbriavision.co.uk_Tel. 01768
Cumbria Woodlands	www.cumbriawoodlands.co.uk
	Tel. 01539 822140
Energy Efficiency Partnership for Homes	www.eeph.org.uk Tel. 0207 222 0101
Energy Saving Trust Advice Centre	www.energysavingtrust.org.uk
	Tel. (freephone) 0800 512 012
Green Book Live (BRE)	www.greenbooklive.com
Microgeneration technology and installer of	latabase
Green Building Store	www.greenbuildingstore.co.uk
	Tel. 01484 461705
Green Guide to Housing Specification	www.bre.co.uk/greenguide
Ground Source Heat Pump Association	www.gshp.org.uk Tel. 01908 665555
Integrated Appraisal Toolkit	www.sdtoolkit-northwest.org.uk
Living roofs: Green and brown roofs	www.livingroofs.org
Low Carbon Buildings Programme	www.lowcarbonbuildings.org.uk

Microgeneration funding	Tel. 0800 915 0990
National Energy Foundation	www.nef.org.uk Tel. 01908 665555
NWDA – NW Rural Carbon Challenge Fu	nd L.Allman@envirolinknorthwest.co.uk
	Tel. 01925 813200
Renewable Energy Association	<u>www.r-e-a.net</u> Tel. 0207 925 3570
Solway Energy Gateway	www.solwayenergygateway.co.uk
Sustainable Brampton	www.sustainblebrampton.org/forum.html
Sustrans Sustainable Transport 65	www.sustrans.org.uk_Tel. 0845 113 00
Town and Country Planning Association	www.tcpa.org.uk
UK Green Building Council	www.ukgbc.org.uk
UK Heat Pump Network	www.heatpumpnet.org.uk
	Tel. 0800 685794
UK Solar Energy Society	www.uk-ises.org.uk Tel. 07760 163559

Appendix 8 Glossary

Biofuel - Organic matter such as forestry/agricultural residues or purpose grown crops that can be used to produce energy.

Biomass – Biomass or wood burning systems use pelleted or chipped wood as fuel. Wood burning stoves and boilers are 80 - 90% efficient.

BREEAM – The Building Research Establishment Environmental Assessment Method is an industry measure of energy and environmental performance of commercial buildings.

Building Regulations (Part L) – The part of the Building Regulations that covers the conservation of energy and power within buildings.

Carbon Footprint – A measure of the amount of greenhouse gases (measured in terms of carbon dioxide) that individual, businesses and organisations release into the atmosphere as a result of their actions over a given period of time. This includes the greenhouse gases used to make and transport the food and goods consumed, to demolish, construct heat and power building and appliances, and to move around from place to place.

Carbon sinks - Atmospheric carbon in the form of carbon dioxide is captured and stored in living (trees and other green vegetation) or non-living reservoirs (soil, geological formations, oceans, wood products) Land uses which absorb and store carbon over long periods of time ('carbon sinks') may help to offset carbon dioxide emissions, at least in the short to medium term.

CHP (Combined heat and power) - The simultaneous generation of usable heat and power (usually electricity) in a single process, reducing heat that would be wasted to the atmosphere, rivers or seas.

Code for Sustainable Homes – A government-produced standard for measuring the impact of new development on the environment, prepared specifically for housing.

Decentralised energy supply - Energy supply from local renewable and local lowcarbon sources usually on a relatively small scale; denotes a diverse range of technologies.

Emissions - The release of greenhouse gases into the atmosphere; carbon dioxide is the main greenhouse gas in the UK.

Energy efficiency – making the best or most efficient use of energy in order to achieve a given output of goods/services or comfort and convenience.

Green roof – A roof of a building which is partially or completely covered with plants.

Greenhouse gases – Atmospheric gases such as carbon dioxide, methane, chlorofluorocarbons (CFCs) that function like a 'greenhouse' by trapping some of the sun's energy that reaches the earth, preventing it from being reflected back out of the earth's atmosphere, and therefore warming the earth's climate.

Geothermal energy – Refers to the natural heat energy created deep inside the earth. Natural processes transfer this heat to close to the surface where it can be tapped for heating or cooling or to generate electricity.

Grey water – Water that has already been used once. It treated, it can be collected and reused again for uses that do not require water that is of drinking standard.

Ground source heat pump – A heat pump that removes heat from the earth or groundwater in cold weather and transfers it to a house through an underground piping system. The process can be reversed in hot weather to transfer heat into the ground.

Low carbon development – A development that achieves a high level of reduction in carbon emissions from energy efficiency measures and renewable energy use on site.

Low carbon energy- technologies that produce energy with low carbon emissions compared with energy produced by standard fossil fuel generation. Combined heat and power boilers and ground source heat pumps, for example, considerably reduce the amount of energy needed in order to produce heating or electricity.

Microclimate – Refers to differences in temperature, humidity and the level of light that can occur on a very small scale as a result of the characteristics of a site or area.

Micro generation - The generation of heat and power on a small scale by individuals, small businesses and communities to meet their own needs.

Mitigation – Taking action to reduce the impact of human activity on the climate system, primarily through reducing greenhouse gas emissions.

Passive design – The use of solar energy and natural processes to control heating and cooling of buildings. It can refer to the way buildings can be built and designed to function efficiently on their own through simple choices on the type of material and fittings used, and building layout.

Passive ventilation system- Takes advantage of the natural passage of air without the need for high energy consuming equipment.

Photovoltaic (PV) Cell – Converts solar energy into electricity. Interconnected cells are encapsulated into a sealed module that produces a voltage.

Renewable energy - Energy flows that occur naturally in the environment: from wind, the fall of water, the movement of oceans, from the sun, from biomass.

Standard Assessment Procedure (SAP) - A government procedure used to generate the energy rating of dwellings on a scale from 0 to 120, based on the calculated annual energy requirement for space and water heating.

Sustainable drainage systems (SUDS) - Are designed to improve the rate and manner of absorption by water of hard and soft surfaces by more natural ways. Alternatives to traditional ways of managing runoff from buildings and hardstandings. Uses a combination of techniques such as swales, green roofs, permeable paving, rainwater harvesting, detention basins, wetlands and ponds.

Thermal mass – A natural property that enables building materials to absorb, store, and later release heat. Materials with high thermal mass are energy efficient.

Zero carbon development – A development which has zero net carbon emissions. These developments are highly energy efficient and generate their own power from renewable sources. They export surplus electricity to the grid and import from the grid when their renewable are producing enough to meet demand.